
Path Planning and Control
in an Autonomous Formula

Student Vehicle

Adam Slomoi

Supervised by Professor Tom Drummond

Department of Electrical and Computer Systems Engineering
2018

Significant Contributions

• Designed an algorithm to enable a racecar to discover and drive a track
laid out by cones

• Designed an algorithm which receives a continual update of new cones
positions and builds a map of the race track

• Implementation of Model Predictive Control to follow a reference path at
a constant speed

• Computation of vehicle dynamics of a racecar based off of discrete posi-
tions and velocities along a racetrack

• Design of a custom Automatic Differentiation class as a foundation to
optimising the racing line around a racetrack

• Custom built implementation of Levenberg-Marquardt algorithm to opti-
mise a racing line around a racetrack

• Design of above algorithm with adaptable parameters to ensure the racing
line is suited to the specific car

i

ECE4095 Final Year Project 2018

Department of Electrical and

Computer Systems Engineering

Path Planning in an Autonomous
Formula Student Vehicle

Adam Slomoi

Supervisor: Professor Tom Drummond

Monash Motorsport is building an autonomous race car which
will compete against other driverless cars around a racetrack.

The vehicle must be capable of autonomously planning a
path around a track.

This project showcases the development of algorithms which
enable a racecar to plan a path without prior knowledge of the
borders of a racetrack. Using a model of the car, the fastest
route around the track is found. Finally, the car is controlled to
stick to the route, allowing it to minimise its lap time.

Project Background

The optimal path is used as a reference for the car to follow.
The car then uses Model Predictive Control to simulate how
the vehicle can stick to the path by predicting what it will do in
the future. It then updates the steering angle and
acceleration/brake commands accordingly.

Following the Path

A track is marked by cones which are initially unknown to the
vehicle. It must discover the track by finding cones within its
field of vision and continually updating its path in order to find
all cones.

Discovering the Track

Once a track is known, the car will compute the fastest route
around the racetrack. This computation forms the ideal lap
for the car to follow.

Finding the Optimal Racing Line

Cone Layout of the Track

Planned Racing Line

Near the Beginning of the Cone Discovery Lap

Further on in the Cone Discovery Lap

Vehicle Predicting its Future States (denoted by red x’s)

M17-E at Formula Student Germany 2018

Executive Summary

This report details the design of a path planning and control algorithm for a
formula student vehicle. The algorithm first discovers the outline of a track.
It does so by linking cones to form two track sides and implementing Model
Predictive Control to drive at a slow speed along the centreline of the track.
This is run continuously until the track has been discovered in its entirety, at
which point the racing line is optimised on-line. The racing line is computed by
optimising the positions and speeds of the vehicle at points along the track using
the Levenberg-Marquardt Algorithm. This is enabled by the design of a custom-
built Automatic Differentiation class in C++. The algorithm is successful in
its performance however is limited primarily by the computational speed, which
increases exponentially with an increase in the number of points considered
along the track.

iii

Acknowledgements

I’d like to thank all those who have assisted me in completing my FYP.

Firstly, my appreciation goes out to my supervisor, Professor Tom Drummond,
for his support and willingness to provide valuable advice – even from the other
side of the world.

Thanks to Sean Stannard who has been my partner in the Path Planning subsec-
tion in the Autonomous Systems section of Monash Motorsport and has worked
on this with me for the year.

Autonomous Systems Coordinators Natalie Seeto and Aryaman Pandav have
provided constant support and help with time-lining.

The wider Autonomous Systems team has been a great network to bounce ideas
off and has provided much assistance along the way.

Thanks to the whole Monash Motorsport team for the support and helping out
with vehicle dynamics-related queries.

iv

Nomenclature

AD Automatic Differentiation
GPS Global Positioning System
INS Inertial Navigation System
LMA Levenberg-Marquardt Algorithm
LTV Linear Time Varying
MMS Monash Motorsport
MPC Model Predictive Control
PRM Probabilistic Roadmap
ROI Region of Interest
ROS Robot Operating System
RRT Rapidly-exploring Random Tree
SAE Society of Automotive Engineers
SLAM Simultaneous Localisation and Mapping

v

Contents

Significant Contributions i

Poster iii

Executive Summary iii

Acknowledgements iv

Nomenclature v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Monash Motorsport . 1
1.3 Formula Student . 2
1.4 Formula Student Driverless . 3
1.5 Project Scope . 3
1.6 2019 Rule Update . 4

2 Literature Review 5
2.1 Introduction . 5
2.2 Defining the Optimal Route . 5
2.3 Vehicle Model . 6
2.4 Decision-Making Architecture . 6
2.5 Global Planning . 7
2.6 Local Planning . 8
2.7 A Combined Approach . 8
2.8 Conclusion . 9

3 Overview 10

4 Track Layout 11
4.1 Competition Specifications . 11
4.2 Configuration Space . 12

5 Discovery Lap 14
5.1 Discovery Lap Algorithm . 14

6 Optimal Racing Line 22
6.1 Track Discretisation . 22
6.2 Racing Line Representation . 23
6.3 Leapfrog Integration . 24
6.4 Constraints . 26

vi

6.5 Optimisation . 27
6.5.1 Minimisation Formulation 27
6.5.2 Levenberg-Marquardt Algorithm 28
6.5.3 Automatic Differentiation 28
6.5.4 Constraint Implementation 31
6.5.5 Choosing Parameters . 34

6.6 Component Scaling . 36
6.7 Performance . 36

7 Model Predictive Control 38
7.1 MPC Overview . 38
7.2 Initial Implementation . 39

8 Computing 41
8.1 Hardware . 41
8.2 Software . 41

8.2.1 Platform . 41
8.2.2 Numerics Library . 42

9 Conclusion 43
9.1 Future Work . 43
9.2 Links . 44

List of Figures

1 . 1
2 . 10
3 Cone Specifications . 11
4 Trackdrive Track Layout . 11
5 Acceleration Track Layout . 12
6 Skidpad Track Layout . 12
7 Skidpad Layout in MATLAB . 13
8 Discovery Block Diagram . 15
9 Finding Start Cones . 16
10 Setting Start Cones . 17
11 Searching for Additional Cones 17
12 Cone Search Area . 18
13 Centreline Reference Generation 19
14 Initial Incorrect Cone Placement (L) Vs. Fixed Cone Placement

(R) . 20
15 Potential Cones Stored in Memory [green x’s] (L) Vs. Path

Formed using Stored Cones (R) 20
16 Completed Discovery Lap . 21
17 Continuous Path (L) Vs. Discrete Path (R) 22
18 S-bend Track Transverse Lines 23
19 Leapfrog Integration . 26
20 Penalty Function . 27
21 Soft Constraints without Regularisation 32
22 Soft Constraints with Regularisation 32
23 Optimal Racing Line in MATLAB 34
24 Impact of Transverse Lines of Execution Time 37
25 MPC Block Diagram . 38
26 Kinematic Bicycle Model . 40

viii

List of Tables

1 Formula Student Driverless Scoring 3
2 Racing Line Vector Representation 24
3 Vehicular Constraints . 26
4 AD Class . 29
5 Minimisation Parameter Values 34
6 Damping Factor Values . 35
7 Initial Damping Factor . 35
8 MATLAB Vs. C++ . 36
9 State Parameters . 38
10 Control Parameters . 39

ix

1 Introduction

1.1 Motivation

This project aims to design a Path Planning system for an autonomous Formula
SAE vehicle. Monash Motorsport (MMS) is building an autonomous racecar,
due to be launched on Monash Open Day 2019, which will feature this project’s
design. The system must be safe, reliable and compliant with Formula SAE
rules and regulations.

1.2 Monash Motorsport

Monash Motorsport is Monash University’s student-run team which designs,
builds and races Formula student cars. The team has built internal combus-
tion vehicles since 2000 and built the first electric vehicle in 2017. The team
currently operates on a two-year design cycle, with odd years consisting of a
complete redesign of the cars. During even-numbered years the previous vehi-
cles are modified and improvements are made. Monash Motorsport competes
yearly in the Australian competition, and in UK, Austria and Germany on even-
numbered years. In 2017 it was decided that a third vehicle would be built, being
an autonomous vehicle. This vehicle will have an autonomous system overlaid
on the existing 2018 electric car.

Figure 1: Monash Motorsport M16

1

Monash Motorsport is structured according to the following engineering sec-
tions:

• Aerodynamics

• Autonomous Systems

• Chassis

• Powertrain

• Suspension

Each section is further split into relevant subsections. The Autonomous Systems
section is split:

• Cameras

• Computing

• GPS and INS

• LiDAR

• Low Voltage Systems

• Path Planning

• Vehicle Actuation

1.3 Formula Student

Formula Student is a group of student design competitions based around the
design, manufacturing and racing of single-seater open-wheeled cars. The com-
petitions are international events and comprise two types of disciplines – Static
and Dynamic. Static events focus around strong business and design skills. By
contrast, dynamic events test the racing capabilities of the cars on a range of
racetracks.

Monash Motorsport will attend the following events in 2018:

• IMechE Formula Student (FSUK)

• Formula Student Austria (FSA)

• Formula Student Germany (FSG)

• Formula SAE-Australia (FSAE-A)

2

1.4 Formula Student Driverless

The Formula Student Driverless competition is scored separately to the internal-
combustion and electric vehicle competitions.

The scoring is:

Table 1: Formula Student Driverless Scoring[1]
Static Events
Business Plan Presentation 75 Points
Cost and Manufacturing 100 Points
Engineering Design 325 Points
Dynamic Events
Skid Pad 75 Points
Acceleration 75 Points
Efficiency 100 Points
Trackdrive 250 Points
Overall 1000 Points

The driverless event is a relatively recent addition to Formula Student competi-
tions, with the first event being held at FSG 2017. 15 teams entered the driver-
less competition and only one team, AMZ Racing from ETH Zurich, was able
to successfully complete the Trackdrive discipline. In 2018, 17 teams entered
the competition however only three teams were able to complete the Track-
drive event [2]. FSAE-A does not yet have a driverless competition, however
several other Australian teams have also begun the development of their own
autonomous cars.

1.5 Project Scope

Path planning has an integral role in an autonomous vehicle. This involves the
development of a software algorithm which builds a dynamic trajectory for the
car to follow. This is a crucial step between the car perceiving its environment
(via sensors) and the physical actuation of the car’s controls.

This project aims to develop such an algorithm which will allow for Monash
Motorsport to successfully complete all dynamic disciplines at FSG 2020. As
a significant number of team members join and leave the team each year, an
emphasis is placed on well-documented material and justifications as to design
choices. This will allow for knowledge transfer to take place from year-to-year
and for the team to continually improve upon the software design.

3

This report showcases the theory behind the design of the path planning algo-
rithm for all dynamic events. Given that the Trackdrive event constitutes the
majority of dynamic points, it is the focus of the development. Additionally,
given that the track is unknown, whereas the Acceleration and Skid Pad tracks
are known, it is presumed to be an encompassing solution; if path planning
is developed to complete the Trackdrive event successfully, then, with minor
tweaking, it should also be able to satisfactorily plan a trajectory for the other
two dynamic events.

In order to achieve this, the notion of ‘path planning’ is broken down into three
factors:

1. Discovery Lap

2. Optimal Racing Line

3. Control

This project details the development of the first two factors listed above. Rudi-
mentary Control was introduced to facilitate the development of the Discovery
Lap and Optimal Racing Line, however its development is beyond the scope of
this project.

1.6 2019 Rule Update

As of writing this report, the updated FSG2019 rules were released. Of note
is the introduction of an autocross event, which consists of two single-lap runs
of the same track of the trackdrive event. The rules stipulate that no prior
track data can be used in the autocross event however do not forbid the use of
such data in the trackdrive event [3]. Effectively, this splits the discovery lap
of the original trackdrive event into its own event. As such, the path planning
algorithm as everything that was designed is still required. The remainder of
the report follows the previous rules.

4

2 Literature Review

2.1 Introduction

Historically vehicles have been human-driven and much of the engineering devel-
opments have gone into improving the capabilities and reliability of the vehicle,
which are utilised by the human driver to maximise performance. Unmanned
vehicles have numerous advantages over manned vehicles, including a reduction
in crash casualties, environmental footprint and road congestion [4]. Accord-
ingly, militaries have invested heavily in the development of unmanned systems
technology by primarily focussing on remotely controlled systems. Such systems
have been catapulted due to technological advances in communications technol-
ogy since Nikola Tesla’s remotely operated unmanned boat in 1898 [5]. With
the advent of autonomous systems, propelled by developments in computer per-
formance, inherent limitations in tele-operated systems are bypassed. Indeed,
decision-making is reduced to the order of computer ticks and human error is
replaced by precise calculations.

The search for creating a way of replacing human drivers is heavily researched
in both academia and industry due to having many practical applications.
An autonomous system’s capacity to plan its route correctly is central to its
widespread usage. As such, this literature review aims to compare different
approaches to the path planning issue. The review will first quantify what a
successful path plan is, then will exhibit how path planning is hierarchically
structured and how each component is approached. A specific focus on how
optimal racing lines are calculated will be included to find any overlap.

2.2 Defining the Optimal Route

There are many research materials on how best to develop autonomous plan-
ning due to the ‘best’ route being dependant on the situation. In an industrial
environment, the use of autonomous robots is to maximise economic output.
Translated into robotic metrics, this means an emphasis on efficiency and ob-
stacle avoidance [6]. In military applications, the optimal path plan for an
autonomous agent is one which balances maintaining stealth (i.e. avoiding en-
emy detection) and minimising the path length [7]. Self-driving cars have the
added constraint of passenger comfort and general safety, which leads to the
possibility of inter-vehicular communications for network-wide path planning
[8]. Other applications for autonomous vehicles have different definitions of the
optimal path. Nevertheless, an underlying definition is present among all ap-
plications: the fastest route subject to extra constraints. A path is optimal if
the sum of its edge costs is minimal across all possible paths from the initial
position to the final position.

5

2.3 Vehicle Model

In order to calculate the path of a vehicle, it is necessary to model the vehicle.
A vehicle has many forces acting on it and is incredibly complex to model in
its entirety. The computation of an optimal path taken by a vehicle is subject
to non-holonomic constraints which adds to the complexity [9]. If the time
taken to model a vehicle is too long, it can result in the planning algorithm to
take longer to compute than the time it has to make a decision in real time.
Camacho and Gordons demonstrate that a state space vehicular representation
is attractive to both academia and industry due to its robustness and suitability
for multivariable processes [10].

The most basic state space model is the kinematic bicycle model, which simpli-
fies a vehicle to a two-wheeled model with several kinematic forces acting upon
it. A more comprehensive model is the dynamic model which, though similar
to the kinematic bicycle model, incorporates forces acting upon the vehicle and
considers tire forces. This model is more common and is used heavily in path
planning formulations [11]. Given that reducing the four wheels of a car into a
bicycle model simplifies load transfer such as car roll, some path planning algo-
rithms employ a four-wheel dynamic model. This approach is more common in
applications where all wheels can be independently steered [12].

The discretised kinematic and dynamic bicycle models are compared in [10],
which displays how increasing the discretisation on the kinematic model for use
in a controller leads to a reduction in error. Additionally, the authors conclude
that the lower computational cost of the kinematic bicycle model performed
similarly to the dynamic bicycle model. By contrast, [11] employs a dynamic
bicycle model for a Model Predictive Controller, placing a heavy emphasis on
the importance of modelling the forces on a tire to accurately model the lateral
and longitudinal forces on a car. Noting the computational burden of a nonlin-
ear model in an online computation, the paper concludes a linearized Pacejka
tire model with a dynamic bicycle model used in LTV MPC is optimal for path
planning on slippery roads. Paden et al. elucidate the kinematic model’s suit-
ability in low speed path planning and that its no-slip assumption renders the
dynamic model superior in more unpredictable circumstances [9].

2.4 Decision-Making Architecture

The planning of an autonomous car is the processing step between the inflow of
streams of then-meaningless information from sensors, and executing the driver
control tasks. What lies in between is a series of hierarchical decisions made by
the autonomous system that builds context and determines the ideal vehicular
commands.

6

For an urban environment, most hierarchies are structured according to Route
Planning, Behavioural Layer, Motion Planning and Local Feedback Control[9].
The paper suggests that first a shortest path is found from a given road net-
work, after which the autonomous system overlays road rules such as stopping
and interacting with other cards. These requirements are translated into a tra-
jectory that is then executed by actuators. Kiss and Papp merge these layers
into a two-tier system which consists of global and local path planning – an
initial path without any constraints and then overlaying human-like paths with
“meaningful” manoeuvres [10].

In essence, most available literature propose developing a generalised reference
path which can be found offline[11] and then generating a localised trajectory
which deals with the dynamic environment in a region of interest[12].

2.5 Global Planning

In order to decide how to best plan a path, it is important to first determine what
configuration space, or representation of the environment, can be used to do so.
This is expressed by creating a roadmap which is a network of possible waypoints
from which the optimal path will be produced. There are different algorithms
which deal with finding the best path from point A to point B, nevertheless
all algorithms have the common goal of finding the shortest obstacle-free path.
Whilst in an ideal world an algorithm would have polynomial time complexity,
Lazard et al. demonstrate that curvature-constrained shortest-path planning in
an arbitrary environment is an NP-hard problem. Consequently, it is necessary
to discretise the problem and use numerical estimation to solve for the path
[13].

A popular category of algorithms is graph-search algorithms, which discretise
the configuration space of the car into a graph, creating a finite number of vehicle
configurations; such examples include the new PRM* [14]and Djikstra’s algo-
rithm. While these algorithms provide a global solution, they are constrained
by the finite set of paths.

In order to overcome this limitation, incremental-search methods such as RRT
and its improved RRT* [14] have been used. These algorithms iteratively explore
the configuration space and can build an increasingly finer discretisation to find
a solution. Whilst they are designed to handle nonholonomic constraints [15],
these tree-like structures can have poor computational convergence.

Other methods exist, such as geometric and variational methods [9], however all
are predicated on the assumption that perfect information about the configura-
tion exists. Koenig and Likhachev propose the D* Lite algorithm, a replanning
algorithm which combines the incremental and heuristic static algorithms de-
scribed above, to efficiently plan in unknown terrain [16]. Further improvements

7

include the AD* algorithm, which incorporates the replanning algorithm with
an anytime algorithm – a method which produces a quick initial solution and
improves it when time permits [17]. This time-sensitive adaptation is crucial in
quick-reaction scenarios.

In a racing line-specific paper, Xiong contends that a nonlinear solver method
is wide ranging, as opposed to methods such curve-based algorithms (Euler
spiral, Bezier), which are best for corners and disregard the vehicle model, or an
artificial intelligence approach which has a poor execution time [18]. Rather than
approaching a track in its entirety, [19] proposes optimising curved fragments of
a track independently and joining them about straight segments. This method
reduces the particle swarm algorithm falling into local minima and can reduce
computational time.

2.6 Local Planning

It is imperative that any planned path has the latest information about its en-
vironment so as to have an accurate and reliable path. Moving objects and
incomplete information can render a global path ineffective. Therefore, more
particular real-time information is incorporated in a local plan which is predi-
cated on the global path.

Any of the aforementioned methods can be combined to produce a generalised
path devoid of any regard of obstacles, and then a more detailed local plan
in a region of interest, which more aptly models the real environment. In the
2007 DARPA Urban Challenge, the Stanford team used a revised A* to build
a global map, and then overlaid a further variation with obstacle avoidance to
get a more accurate local path [18]. Once this is computed, control is required
to ensure the vehicle sticks to the path.

By comparing the performance of several low level algorithms, Snider demon-
strates that control performance is heavily reliant on path smoothness and cur-
vature continuity [19]. The low-fidelity models of path planning algorithms can
also lead to violations of both control and kinodynamic constraints.

2.7 A Combined Approach

In order to mitigate the potential disconnect between the path planning and
control implementation, a low-level motion planner able to deterministically
handle the discontinuities of the planned path can be used. Significant research
has gone into Model Predictive Control, which uses predictions of the future
evolution of the vehicle and derives an appropriate next control step [20]. Li et
al. demonstrate that MPC is able to track a rough reference path robustly.

8

2.8 Conclusion

This literature reviews provides a brief introduction into the path planning
for autonomous vehicles. Most available sources propose first finding a high-
level global path. General path finding algorithms such as A* are popular in
autonomous path planning. Alternatively, for an environment such as a racing
line, nonlinear methods can be used. Once the reference path is found, low-level
planning is required. Incorporating a vehicle model is integral in finding an
optimal solution for a specific autonomous agent’s dynamic capabilities. Model
Predictive Control is a popular low-level controller that is able to overcome
approximations in a global reference path.

9

3 Overview

Path Planning resides on the Autonomous System architecture in between Sen-
sor Perception and Vehicle Actuation. That is, the vehicle perceives cones,
which are inputted into the path planning algorithm, which outputs steering
and acceleration commands.

For the initial lap in the trackdrive event, the cones are continually updated.
The algorithm must be able to continual update the path to incorporate the
cones, lest it veer off course. This requires the algorithm to be fast. In order to
ensure all cones are detected, the path does not need to be optimal, rather it
must be reliable.

The racing line optimisation is extremely important in allowing the car to drive
to the limit. Because of unknown track conditions (weather, poor surface, etc.)
and for safety, the algorithm must have enough parameterisation to account for
any imposed limitations. It needs to be fast enough to compute the racing line
while it is on the track, ideally within the order of tens of seconds.

The control must be fast enough to apply controls at a similar rate to that of
the physical control of the vehicle actuators (approximately 20Hz). It should
follow the optimal racing line and make necessary adaptations where required.
It too should be parameterised to impose any limitations sought.

Figure 2: Path Planning Overview

10

4 Track Layout

4.1 Competition Specifications

The track is built up of a variety of cones of the following specifications:

Figure 3: Cone Specifications[21]

Each event has its own track rules defined according to D4.3, D5.1 and D5.81
for Acceleration, Trackdrive and Skid Pad respectively [1].

The track layouts are depicted in the following figures:

Figure 4: Trackdrive Track Layout[21]

11

Figure 5: Acceleration Track Layout[21]

Figure 6: Skidpad Track Layout[21]

4.2 Configuration Space

Using the aforementioned track descriptions, the cone positions can be placed
according to (x,y) coordinates about a global map.

12

The following figure demonstrates the implementation of the Skidpad track lay-
out as used in MATLAB.

Figure 7: Skidpad Layout in MATLAB

13

5 Discovery Lap

The exact track and cone positions are known for the Acceleration and Skidpad
events. However, the Trackdrive event involves an entirely unknown track which
the car must navigate autonomously. This involves the car needing to traverse
the entire track to allow its perception components to learn the environment
using a SLAM algorithm. In order for this to take place, the path planning and
SLAM must work concurrently, where each provides enough information to the
other for it to update until the entire track has been driven and SLAM is able to
close the loop of the circuit. The discovery lap is the first lap of the Trackdrive
event where the car will need to navigate blindly and detect all the cones for a
global path to be built.

The autonomous vehicle is using ROS as the foundation of its computing archi-
tecture. As robotic middleware, ROS will house all of the software and allow for
messages to pass between processes. In the discovery lap, the perception pro-
cesses will constantly update cone information which is vital for a new updated
path to be built.

D8.1 of the FSG rulebook [1] stipulates the following in regards to the closed
loop circuit layout for the trackdrive event:

• Straights: No longer than 80 m

• Constant Turns: up to 50 m diameter

• Hairpin Turns: Minimum of 9 m outside diameter (of the turn)

• Miscellaneous: Chicanes, multiple turns, decreasing radius turns, etc.

• The minimum track width is 3 m

• The length of one lap is approximately 200 m to 500 m.

5.1 Discovery Lap Algorithm

At the beginning of a run, the car is placed 6m from the start/finish line while
the car is switched to autonomous mode. The car’s state machine is switched
to ‘AS Ready’ during which it will have ample time for its sensors to accurately
detect cones (while people move behind barriers) before being switched to ‘AS
Driving’ [1].

14

Figure 8: Discovery Block Diagram

15

Initially, the car’s position is constant and nearby cones are detected. Given the
performance of the cameras and that the car is 6m from the big orange cones,
it can be assumed that the cones will be detected, potentially along with blue
and yellow cones closer to the car.

The algorithm is predicated on the notion that each of the two sides of the track,
consisting of blue and yellow cones, can be linked. As such, the algorithm begins
by searching for a cone to begin the left side and a cone to begin the right side.
This is carried out by searching for cones within a rectangular search area from
the left and right sides of the car. The following image depicts the vehicle in blue
and its field of vision denoted by a circle-segment with a red ‘x’ for detected
cones. The left and right search rectangles are shown in orange and yellow
respectively. Candidate left and right start cones are shown by coloured arrows
of the same colour.

Figure 9: Finding Start Cones

Once candidate cones are found for each side the algorithm calculates the dis-
tance of each to the car, and decides upon the closest left and right cones to
begin the track sides.

16

Figure 10: Setting Start Cones

A recursive process now begins in which the vehicle maps out a small path,
enabling the vehicle to drive forward slightly and detect more cones, after which
a new path is calculated. The path is found by searching for cones which belong
to each side.

Figure 11: Searching for Additional Cones

A search area is spread from a cone, depicted by the magenta segment. The
closest cone detected is linked up to the track side. The process is repeated
recursively, for both sides, until no further cones can be linked to a track side.

17

Figure 12: Cone Search Area

In order to account for curves in the track, the search area is rotated according
the angle made by the most recent cone and its precursor.

Once more cones have been placed into track sides, the algorithm interpolates
between cones, and create a middle line which is used as a path for the car to
follow. In instances where not enough cones have been found, the car projects
cones ahead and continues in a straight line, enabling more cones to be detected.
The algorithm is designed to be as robust as possible. Accordingly, the algorithm
does not use the cone colours as a foundation for placing the cones on either
side of the track. Therefore, in a scenario where the camera system is down,
and only LiDAR is detecting cones, the algorithm is still able to build a path.
In the best case scenario, both cameras and LiDAR are working, in which case
the cone colours detected in the real world are used to verify that the cones
have been placed in the correct side of the track.

18

Figure 13: Centreline Reference Generation

There are situations where the algorithm places a cone on the wrong side of
the track because it is the best option known to the car at that point in time.
It was decided to allow this to happen, because mitigating it directly would
mean severely reducing the search area for a next cone. However, in order
to prevent incorrect cone placement from corrupting the path, new cones are
double checked to be in the correct track side when new cones are detected. This
double-check allows for erroneous cone placements to be fixed without actually
impacting the planned path. This is due to cones placed on the wrong side of
the track actually resulting in a middle reference path to be built which can be
corrected upon receiving more track information, as shown below.

19

Figure 14: Initial Incorrect Cone Placement (L) Vs. Fixed Cone Placement (R)

The algorithm utilises its ability to sometimes see beyond what is required to
build a path in its immediate vicinity. This vital information is stored by the
algorithm to be used as future potential cones. However, given that SLAM
encounters drift prior to loop closure, unused cones need to be discarded after
approximately 20 seconds.

Figure 15: Potential Cones Stored in Memory [green x’s] (L) Vs. Path Formed
using Stored Cones (R)

20

The SLAM algorithm will use loop closure to adjust cone positions to account
for drift. This will allow for the entire track to be accurately denoted by cone
positions.

Figure 16: Completed Discovery Lap

The car uses MPC to follow the reference line at each point. The design is
covered in further detail in the section about MPC. Importantly, for this part
of the path planning, the goal is to drive the track as conservatively as possible.
As such, the controller ensures the vehicle travels at a constant slow speed and
tries to stick to the reference line, which is at the centre of the track.

21

6 Optimal Racing Line

With the layout of a track, it is possible to calculate the fastest possible lap
time. It is crucial to have a race car driving, within it limits, as fast as possible
in order to win a race. This section describes the minimisation of the lap time
for the vehicle. As the vehicle will have just received the cone locations at
the end of its first lap in the trackdrive event, this computation needs to be
quick and computed on-line. For the acceleration and skidpad events, this same
computation can be used with the known cone locations. The result of the
optimal racing line algorithm provides a theoretical trajectory for the car to
follow to obtain its minimum possible lap time.

6.1 Track Discretisation

As discussed in [13], it is important to discretise a track in order for an optimal
path to be planned. Using concepts of integration, it is possible to understand
a path as a sequence of infinite points along a track. Effectively, the continuous
path is a sequence of points along an infinite number of transverse lines along
the track. This path is then reduced from an infinite (continuous) number of
points, to a finite (discrete) amount.

Figure 17: Continuous Path (L) Vs. Discrete Path (R)

In order to achieve this discretization, the transverse lines are needed. There
is an embedded trade-off between the accuracy of the track and any associated
computational time; the more the track is discretised, any computations related
to the track become faster, due to having fewer track lines through which to
iterate, however the track begins to represent the reality less and less, and vice
versa. As such, it is important to have the number of transverse lines a tuneable
parameter, denoted throughout this report by ‘N’. Naturally, this value will
vary from track to track, given the different tracks are comprised of different
shapes. For example, a straight can be discretised heavily, due to having no
lost information upon discretisation. By contrast, a hairpin-turn or chicane can
have critical information lost if not enough track information is kept.

22

The track is built by interpolating between the cone positions that have been
detected. By interpolating individually for the left and right track sides, many
imaginary cones can be placed on the track. They are paired to make transverse
lines and as many such imaginary cones are kept as required, becoming the new
track configuration space.

Figure 18: S-bend Track Transverse Lines

Figure 18 depicts the transverse lines of an S-bend track. The original cones can
be seen as dots along the track. The interpolation of each trackside is shown by
the black lines, from which, in this case 66, transverse line pairs are chosen to
represent the track.

6.2 Racing Line Representation

Using the track configuration space derived from the cones, it is possible to
created an optimal racing line. Each transverse line is given an associated
position and speed. The position is a proportion along the line, where a value
of 0 corresponds to the inner side, and 1 corresponds to the outer side. Speed
is a value at the corresponding position in metres per second.

These inputs are stacked are expressed as vectors. For N transverse lines, the
racing line can be expressed according to Table 2.

23

Table 2: Racing Line Vector Representation
Point Position (P) Speed (S)
0 P0 S0

1 P1 S1

2 P2 S2

3 P3 S3

N-2 PN−2 SN−2

N-1 PN−1 SN−1

6.3 Leapfrog Integration

As the speed and position are the parameters which define the racing line, it is
necessary to derive further kinematic parameters which are used to ensure that
the racing line is indeed optimal and attainable.

Leapfrog integration is a stable second-order numerical integration method which
is common in dynamical systems. The method staggers time-derivatives of posi-
tion about interleaved points. This theory is used as the basis of the formulation
of the kinematic equations which derive such values from the position and speed
vectors.

xi = pi ·Oi + (1− pi) · Ii

di = xi+1 − xi

di =

√
di
T · di

∆ti = di ·
2

si + si+1

vi =
di

∆ti

aGi = (vi − vi−1)
2

∆ti + ∆ti−1

24

ai =

(didi)1
−
(
di
di

)
0(

di
di

)
0

(
di
di

)
1

× aGi
ai =

√
ai
T · ai

ji =
ai+1 − ai

∆ti

Pwri = m · ai0 · si
where
p is a Nx1 position vector
s is a Nx1 speed vector
I is a Nx2 inner-cone matrix where each row is (x,y) coordinates
O is a Nx2 outer-cone matrix where each row is (x,y) coordinates
x is a Nx2 path coordinate matrix where each row is (x,y) coordinates
d is a Nx2 matrix of segment differences where each row is (x,y) coordinates
d is a Nx1 distance vector
∆t is a Nx1 time vector
v is a Nx2 velocity vector in a global (x,y) coordinate frame
aG is a Nx2 acceleration vector in a global (x,y) coordinate frame
a is a Nx2 acceleration vector in a local car frame where each row is (lat-
eral,longitudinal)
a is a Nx1 acceleration magnitude vector
j is a Nx2 jerk vector in a local car frame where each row is (lateral,longitudinal)
m is the mass of a vehicle
Pwr is a Nx1 power vector

The following graphic depicts the structure of the leapfrog integration equations
shown above. It can be seen that successive derivatives of position with respect
to time vary from being assigned to a node and to an edge. This ensures the
kinematics remain as accurate as possible.

25

Figure 19: Leapfrog Integration

6.4 Constraints

The path now has values for time, position, velocity, acceleration, jerk and power
at each point. Using these values, and known vehicular limits, the formulation
of a minimisation function can be built.

The optimal racing line is structured in order to minimise time subject to con-
straints on: exiting the track, exceeding imposed speed limits, and vehicular
limits on acceleration, jerk and power.

Upon consultation with Monash Motorsport team members as well as viewing
vehicular data analysed with a MoTeC M150 management system , the following
constraints are applied:

Table 3: Vehicular Constraints
Parameter Minimum Maximum
Acceleration (m/s2) 0 9.8
Lateral Jerk (m/s3) −74 74
Longitudinal Jerk (m/s3) −90 60
Power (kW) none 80, 000

26

6.5 Optimisation

6.5.1 Minimisation Formulation

The optimal racing line occurs when the steady-state lap time around the track
is as fast as possible subject to constraints inherent in a vehicle as well as those
imposed externally.

Given this, the minimisation function is built to minimise lap time and add a
time penalty for any breach of constraints. These penalties correspond to the
residuals described below in the Levenberg-Marquardt Algorithm.

Figure 20: Penalty Function

The above figure displays the penalty function, where any parameter value
placed between the minimum and maximum allowable values has no associ-
ated penalty, while anything in excess has an increasing penalty. In order to
standardise all parameters to time as they are on different scales, the gradi-
ents of the excess penalties can be adjusted as required. By implementing soft
constraints, the optimisation is allowed to initially break the constraints, at a
penalty, to hasten its convergence.

The optimisation function is given by:

S =

N−1∑
i=0

(∆ti + pen(si) + pen(pi) + pen(ai) + pen(jlati) + pen(jloni) + pen(pwri))

27

6.5.2 Levenberg-Marquardt Algorithm

The Levenberg-Marquadt Algorithm is an optimisation method used to solve
nonlinear least-squares problems. The algorithm is a combination of the Gauss-
Newton algorithm and the gradient descent method. It does this through the
use of a damping factor which updates as the minimisation progresses. As the
damping factor increases, LMA approximates gradient descent; as it decreases,
LMA approximates Gauss-Newton. As the parameters being minimised tend
towards their optimal value, the method acts like Gauss-Newton [22]. The
algorithm requires an initial guess and can converge to local minima.

The LMA formula aims to minimise the sum of squares:

S(β) =

N−1∑
i=0

ri
2(β)

Using the following equation:

βi+1 = βi − (JTJ + λ · diag(JTJ))−1 · JTr

where
βT = (p0, p1, p2, . . . , pN−1, s0, s1, s2, . . . , sN−1)

Ji,j = ∂ri(βt)
∂βj

r(β) = (y − f(β))
λ is the damping factor

λ is a variable parameter which affects how the minimisation occurs. In order
to ensure it is at its best value, at each iteration the value is updated. If at
iteration ‘j’ S(β)j < S(β)min then λ is decreased by a ‘damp down’ factor,
otherwise if S(β)j ≥ S(β)min, λ is increased by a ‘damp up’ factor.

6.5.3 Automatic Differentiation

In order to overcome the computational expense of dynamically generating Ja-
cobian matrix analytically, an alternate approach is used. Automatic Differen-
tiation is a set of techniques which numerically calculates the derivative of a
given function. AD works by implementing the chain rule to find the derivative
as all computer computations can be broken into simple arithmetic operations
(addition, subtraction, multiplication, division, etc.). The result is as accurate
as its numerical precision and is useful when the numerical model changes over
time [23].

The foundation equations of AD are the following rules in differentiation: Sum

Rule: d(u+v)
dx = du

dx + dv
dx

Product Rule: d(u·v)
dx = v · dudx + u · dvdx

28

Quotient Rule: d(u/v)
dx =

v· dudx−u·
dv
dx

v2

Power Rule: duv

dx = v · uv−1

Automatic differentiation is suitable in this application due to a new Jacobian
needing to be calculated for every optimal racing line input.

The foundation of the algorithm is the custom AD class, structured as follows:

Table 4: AD Class
AD Class

• Value

• Derivatives

• Size

• AD()

• getdp()

• getds()

Value: A value which corresponds to the value of the class
Derivatives: A vector which is a column stack of d

dpi
and d

dsi
, i ∈ Z ∩ [0, N − 1]

Size: A value which corresponds to the length of the derivatives vector, 2N ,
where N is the number of transverse lines
AD : A constructor for the AD class
getdp(i): An accessor to Derivatives for the partial derivative of Value with re-
spect to position at tranverse line ‘i’
getds(i): An accessor to Derivatives for the partial derivative of Value with re-
spect to speed at tranverse line ‘i’

The following is a demonstration of how the AD works. For simplicity, the AD
class will comprise only a value and its derivatives.

Assume we have the following three AD classes:

29

A B C
Value 1

Derivatives

 1.5
−2
2

Value 4

Derivatives

 1
2
3

Value -2

Derivatives

 1
0
1

We seek to perform the following operation D = (A+ C) ·B.

Utilising the sum rule, A+C is calculated.

A+C
Value -1

Derivatives

 2.5
−2
3

Now, D can be calculated using the product rule.

D
Value -4

Derivatives

 9
−10

9

The above demonstration shows the ease with which AD is used. Given that
many kinematic values are needed in computation of the optimal racing line,
and it needs to be known how each changes with respect to its and neighbouring
points’ speeds and positions, AD is a suitable choice for deriving the Jacobian
matrix.

30

6.5.4 Constraint Implementation

The optimisation function was initially defined as

S =

N−1∑
i=0

(∆ti)

subject to

0 ≤pi ≤ 1

0 ≤si ≤ maxSpeed
0 ≤ai ≤ 9.8

−74 ≤jlati ≤ 74

−90 ≤jloni ≤ 60

Pwri ≤ 80, 000

This is known as hard contraints implementation due to the constraints being
immutable. Whilst this may seem logical, it can cause complexities in carry-
ing out the optimisation. This is due to the computation not exceeding the
constraints at all, meaning that constraints cannot be temporarily exceeded to
minimise the overall function and then tightened again. This causes severe issues
in an implementation as sophisticated as finding the optimal racing line given
that the many parameters being optimised need to be within the six aforemen-
tioned constraints at all times. This limitation resulted in convergence to local
minima which was visibly not the optimal solution. Additionally, the implemen-
tation relied heavily on the MATLAB fmincon function, which was extremely
slow.

To combat this issue, soft constraints were used instead of the hard constraints.
Section 6.5.1 details the generalised implementation of these constraints. The
points beyond which constraints are penalised are the same values as for the
hard constraint implementation. Soft constraints require fine tuning due to
the relative differences between exceeding constraints despite all being of the
form depicted in 20. For example, exceeding the track by 60cm at one instance
would result in a penalty of 0.2s, whereas going 0.2m/s over the imposed speed
limit would result in the same penalty, despite being significantly less important.
Accordingly, each constraint has its excess penalty function scaled by a factor to
normalise them, ensuring that relative penalties have equitable constraints. As
such, speed, acceleration and jerk are scaled by ∼ 10−1 and power is scaled by
∼ 10−5. Fine tuning can be made beyond this however would not significantly
impact the result.

The solution of the result is not what would be expected. In order to demon-
strate this, figure 21 depicts the output of the minimisation truncated before
reaching its optimal solution. The lap time at this truncated point is 14.03s. It
is clear that the car is turning excessively on straight parts of the track.

31

Figure 21: Soft Constraints without Regularisation

In order to mitigate this, regularisation is used on acceleration. Figure 22 dis-
plays how smoothing is used to make the car drive according to a preferable
racing line. This image is taken using the same constraints and number of it-
erations as 21, but with the addition of regularisation. Given that it is also
truncated before reaching the optimal racing line, it is not the ideal trajectory,
however it aptly portrays the efficacy of adding regularisation. This is reinforced
in the track time, which is 13.36s as opposed to 14.03 seconds.

Figure 22: Soft Constraints with Regularisation

Regularisation is a technique used to introduce additional information to a prob-
lem which is ill-posed. In this case, the regularisation term is the introduction

32

of a penalty on any acceleration. This ensures the algorithm only accelerates
when necessary. Prior to regularisation the minimisation function is

S =

N−1∑
i=0

(∆ti + pen(si) + pen(pi) + pen(ai) + pen(jlati) + pen(jloni) + pen(pwri))

where

pen(x) =

m(x−min) x < min

0 min ≤ x ≤ max
m(max− x) x > max

min is the minimum allowable value
max is the maximum allowable value
m is the normalisation gradient

The new minimisation function is :

S =

N−1∑
i=0

(∆ti + pen(si) + pen(pi) + pen(ai) + pen(jlati) + pen(jloni) + pen(pwri) + reg(ai))

where

pen(x) =

m(x−min) x < min

0 min ≤ x ≤ max
m(max− x) x > max

reg(x) = m · x

min is the minimum allowable value
max is the maximum allowable value
m is the normalisation gradient

Placing this formulation in MATLAB’s optimisation function obtains the opti-
mal racing line with a lap time of 11.01s.

33

Figure 23: Optimal Racing Line in MATLAB

6.5.5 Choosing Parameters

A test scenario was set up to isolate each constraint to identify a suitable gradi-
ent factor. The scenario involves running 100 iterations and cycling through a
range of factor values for a specific constraint and determining which results in
the lowest lap time. Once found, a new constraint was added and the process
repeated. Table 5 displays the parameter values in order of implementation
from top-to-bottom.

Table 5: Minimisation Parameter Values
Constraint Type* Gradient Minimum Maximum

Position pen 10 0 1
Speed pen 20 0 variable
Accel. pen 0.1 0 9.8
Accel. reg 10−3 - -
Power pen 10−6 −107 80 · 106

Lat. Jerk pen 0.01 -74 74
Lon. Jerk pen 0.01 -90 60

*Types are according to the equations declared in section 6.5.4

With all constraints set according to Table 5, the values of the damping factors
can be tuned. A range of damping factors, for both λup and λdown, are evaluated
according to the cost in table 6. The results show that there is no clear pattern
to determine the best damping factors.

34

Table 6: Damping Factor Values
Damp Up Damp Down 100 Iter. Cost (s) 500 Iter. Cost (s)

2 2 15.05 11.23
2 3 15.07 11.59
3 2 13.79 11.05
5 5 18.41 11.83
5 1.5 15.02 11.04
10 10 15.55 11.89
11 9 15.07 11.59
15 15 16.24 13.37

λ0 = 0.001 for all tests

Slight variations in the damping factors can cause drastic changes in optimi-
sation performance. While the results indicate small values for the damp-
ing factors, it is commonplace in software libraries to default the values to
λup = λdown = 10 [24]. The significance of the damping factor choice is more
prominent in an optimisation with a limited number of iterations. Table 6 shows
that after a few hundred iterations that the difference in choice of damping pa-
rameters only leads to a cost variation in the order of milliseconds.

The starting value of λ0 impacts the convergence time of the algorithm. The
fastest convergence occurs with an initial λ = 102 which is significantly larger
than λ = 102 which recommended in [22]. Comparing the costs of Tables 6 and
7 highlight that there is pattern in deciding upon parameter values. Many of
the parameters are interdependent, giving rise to the difficulty in analytically
choosing values.

Table 7: Initial Damping Factor
λ0 100 Iter. Cost (s)
103 14.18
102 13.75
10 14.19
1 15.25

10−1 14.37
10−2 14.83
10−3 15.05
10−4 15.10
λup = λdown = 2 for all tests

35

6.6 Component Scaling

Marquadt’s insight to LMA provides the scaling of λ by diag(JTJ) in J†,
which scales each component of the gradient by its own curvature – avoiding
slow convergence in directions of small gradients. Counter-intuitively, this im-
plementation causes slower convergence than Levenberg’s traditional scaling of
λ by I. I is altered slightly so that components on the diagonal related to p are
1, and components related to s are 0.01.

6.7 Performance

The MATLAB function uses the interior point method to find the optimal racing
line. It employs additional back-end techniques which produce a faster result.
As this is not directly convertible to C, a custom optimisation function was
built, LMA, as described in section 6.5.2. In their article, Li et al. demonstrate
that the Levenberg-Marquardt method has higher computational precision and
a faster convergence speed than the path-following interior point method [25].
Whilst this would vary on a case-by-case basis, this highlights that LMA is an
effective optimisation method.

Implementation of LMA in C++ achieves the expected result at a significant
perfomance boost over MATLAB. Table 8 demonstrates that LMA in C++ is
6.5x faster than MATLAB’s interior point method, and converges in half the
number of iterations. Beyond this, LMA is able to reach a far lower convergence
value if allowed to continue running, making it a far superior algorithm.

Table 8: MATLAB Vs. C++
Iterations Execution Time (s) s

iter

MATLAB 404 50.9153 0.1260
C++ 217 7.9752 0.0368

Performance to reach a cost of 11.2s

The number of transverse lines severely limit the performance of the algorithm.
Figure 24 delineates the exponential relationship between the number of trans-
verse lines and execution time. This is largely due to the pseudoinverse calcu-
lation; for 150 transverse lines, the algorithm spends 95.04% of the execution
time calculating Bi+1 = Bbest − Jac†r.

36

Figure 24: Impact of Transverse Lines of Execution Time

The above figures and tables highlight the sensitive nature of the LMA. Con-
vergence time is largely dependant on the number of transverse lines in the
problem rather than the parameter choices. Whilst parameter selection does
affect the execution time of the algorithm, its impact pales in comparison to the
degree with which size of the matrices in the problem affect computation time.
Assuming a reasonable selection of parameters, the algorithm performance is
beyond human input.

37

7 Model Predictive Control

Model Predictive Control is used to control the car to the optimal racing line.
Given that the car will not start driving according to the racing line, it needs
to be controlled onto it. Additionally, because the racing line is a theoretical
calculation, real world variations may result in the car going slightly off the
desired track. As such, control is necessary to allow for the car to respond to
any changes. This is, in essence, the calculation of the local trajectory of the
car based off of the global path computed by the faster racing line algorithm.
MPC is able to deal with constraints as well as non-linear systems [26], making
it ideal for vehicular implementation.

7.1 MPC Overview

The following figure demonstrates how MPC fits into the system. ‘u’ refers to
the vehicle controls and ‘Z’ refers to the vehicle state.

Figure 25: MPC Block Diagram

The following table details each variable in Z which describe the vehicle state.

Table 9: State Parameters
Parameter Description

X X-coordinate of the vehicle’s centre of mass
Y Y-coordinate of the vehicle’s centre of mass
Ψ The angle the car’s centre of mass is travelling with respect to the

vechicle’s longtitudinal direction
vx The velocity of the centre of mass in the x-direction
vy The velocity of the centre of mass in the y-direction
dΨ
dt The rate of change of the angle the car’s centre of mass is travelling

with respect to the vechicle’s longtitudinal direction

38

The following table details each variable in u which describe the vehicle controls.

Table 10: Control Parameters
Parameter Description

a The vehicle’s acceleration (determined the the throttle/brakes)
λ The vehicle’s wheel angle

The problem becomes a control optimization problem in which the goal is to
minimise the car’s error from the optimal racing line in terms of position and
speed. Exact formulation of the MPC differs in different implementations but
there are four common stages [26]:

1. Start at a time interval and predict a finite number future inputs and
outputs for the system

2. Derive a cost function predicated on the future control inputs and state
outputs. Optimise the function with respect to the input control signals.

3. Input the first of the future control signals to the system

4. Wait for an updated system state (next time step) and repeat Stage 1

The design takes place in step 2, for which an optimisation function is formu-
lated.

minimize
u

H∑
i=1

J(Zi, ui)

subject to Zi+1 = f(Zi, ui)

C(Zi, ui) ≤M

where
J is the cost function
H is the horizon (number of future predictions to consider)
f is the vehicle prediction model
C is the vehicular constraints

7.2 Initial Implementation

As discussed earlier, the MPC used thus far has been a basic version to enable
further development of the discovery lap algorithm. This section discusses the
overarching design principles used rather than delving into the specifics of the
implementation.

39

The design uses the simplest of the vehicle representations – the kinematic
bicycle model. It was set to have a constant speed of 5m/s in order to reduce
the complexity of adding a reference speed. The only reference used is a path,
which the algorithm attempts to minimise its sum of squared errors to this path
for 20 time horizons ahead.

Figure 26: Kinematic Bicycle Model [27]

40

8 Computing

8.1 Hardware

The autonomous vehicle’s computing platform consists of an Intel i7 8700 CPU,
PSoC 5LP and an NVIDIA Jetson TX2. The i7 is the main processing unit of
the vehicle. It will house the ROS nodes, one of which is mms path planner.
This node will be the form of communication for the path-planning algorithm
to the rest of the processes. The i7 is best for sequential processing, whilst the
Jetson is best for parallel processing.

The path-planning algorithm consists of different aspects that differ in process-
ing form. For example, the discovery lap algorithm is very sequential and cannot
utilise the 256 cores provided by the Jetson. Contrarily, the racing line compu-
tation involves large matrix manipulations that can be optimised to run faster
on the Jetson.

The Jetson will be used solely for camera processing due to large amounts of
data in the images. Monash Motorsport currently has another Jetson that can
be added to the car. Given its size and the associated complexities of adding
another unit to the computing system, the team’s preference is to leave it off.
However, if it can be shown that it significantly increases the path-planning
performance then it can be added. In this case the code will need to be written
in CUDA.

Notwithstanding, the path planning will be trialled initially on the i7, which has
an integrated UHD Graphics 630 unit which can be used to speed up components
of the algorithm which can be run in parallel. A library called ‘ArrayFire’ can
be used to utilise the integrated graphics processor.

8.2 Software

8.2.1 Platform

The operating system for the computing system is Ubuntu, on which ROS will
be running the robotic processes of the vehicle. ROS will be run in C++, which
was decided to be the foundational software language of the vehicle. C++ is
useful due to its speed and ubiquity. Additionally, code written in C++ can be
adapted to incorporate CUDA or ArrayFire for parallel processing speed boosts.

It was decided to use MATLAB to prototype algorithms due to its simple format
and large library of inbuilt functions. A simulation environment was set up to
visualise the car’s behaviour on a track. For real implementation, the code is

41

translated into C++.

8.2.2 Numerics Library

In order to carry out many of the operations that were afforded by MATLAB,
a numerics library is needed in C++. All algorithms in path planning utilise
matrices which are not a default class in C++. Additionally, the Levenberg-
Marquardt algorithm has large matrix manipulations.

The track is a maximum of 500m, mapped out with cones at a maximum distance
of 5m apart. Given that the 5m spacing will presumably only be applicable on
straights, and that turns will require a higher density of cones, it is reasonable
to estimate that there may be 150 cones on either side. This corresponds to
N = 150 transverse lines. Therefore, the Jacobian matrix is 1050x300; the
operations involved in computing Jac† are significant.

TooN is a library which provides easy access to matrix decompositions. Be-
cause the Jacobian matrix is a Hermitian, positive-definite matrix, the library’s
Cholesky decomposition is used to compute the pseudoinverse of the Jacobian.
The Cholesky decomposition is the most efficient matrix decomposition method
when it can be applied (which it can here) [28].

42

9 Conclusion

The goals of this project were achieved satisfactorily. The discovery lap algo-
rithm is able to continuously plan a path, and follow it, enabling the vehicle to
drive and learn a racetrack without any prior knowledge. The resultant cones
are used to compute an optimal racing line around the track on-line. The racing
line optimisation is successful and is able to be easily tuned to factor in differ-
ent considerations, such as limiting speed. The computation time relies heavily
on the size of the track being considered, and further work needs to go into
optimising the code to hasten the execution time. Overall, the path planning
is at a promising stage of enabling Monash Motorsport in achieving its goal of
completing all dynamic events at a formula student driverless competition.

9.1 Future Work

• Integration with other systems of the autonomous vehicle.

• Creation of an automatic track generator would greatly assist in the veri-
fication and tuning of the algorithms.

• Further testing to refine the shapes of the search areas in the discovery
lap algorithm. This relates to the above point and is merely a matter of
extensive testing.

• The matrix manipulations are a clear bottleneck in the computation of
the racing line. It would be best to compare different numerics libraries,
such as Eigen, and decide upon a library based on experimental factors.

• As above, a parallel processing approach is likely to assist with reducing
the execution time of the algorithm. Future code developments should
include the Jetson TX2 and the i7-integrated graphics card.

• Apart from making the processing time faster, work should be carried out
to make the computation size smaller. This would include an adaptive
interpolation function which selectively places fewer transverse lines on
straights and a higher density of transverse lines on corners and areas
with higher curvature in general. This would reduce redundant transverse
lines taking up computation time.

• Investigate scaling of λ in J† in LMA to improve convergence time

• MPC needs to be improved. A basic implementation was used to allow
the development of the discovery lap algorithm. This has a constant speed
and is not acceptable for laps which have the optimal racing line.

43

9.2 Links

Code repository: https://bitbucket.org/mms-driverless/path-planning

FYP video: https://www.youtube.com/watch?v=uPFKnfqb3ZE

44

References

[1] (2017, October). [Online]. Available: https://www.formulastudent.de/
fileadmin/user upload/all/2018/rules/FS-Rules 2018 V1.1.pdf

[2] (2018, September). [Online]. Available: https://www.formulastudent.de/
fsg/results/

[3] (2018). [Online]. Available: https://www.formulastudent.de/fileadmin/
user upload/all/2019/rules/FS-Rules 2019 V1.1.pdf

[4] S. Bagloee, M. Tavana, and M. e. a. Asadi, “J. mod. transport. (2016) 24:
284.”

[5] M. Boulet, “The autonomous systems tidal wave,” Lincoln Labaratory
Journal, vol. 22, no. 2, 2017.

[6] Y. Ting, W. Lei, and H. Cha, “A path planning algorithm for industrial
robots,” Computers and Industrial Engineering, vol. 42, no. 2, 2002.

[7] S. Bortoff, “Path planning for uavs,” in American Control Conference,
Chicago, IL, USA, USA, 2000.

[8] C. Katrazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and fu-
ture research directions,” Transportation Research Part C: Emerging Tech-
nologies, vol. 60, pp. 416–442, 2015.

[9] B. Paden, M. Cap, S. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
Massachusetts Institute of Technology, Laboratory for Information and De-
cision Systems, Cambridge MA, USA, Tech. Rep., 2016.

[10] C. E.F and C. Cordons, Model Predictive Control, second edition ed. Lon-
don, UK: Springer-Verlag, 2007.

[11] S. Omidshafiei, “Optimal racing line control,” Massachusetts Institute of
Technology, Cambridge MA, USA, Tech. Rep., 2014.

[12] R. Oftadeh, R. Ghabcheloo, and J. Mattila, “Time optimal path following
with bounded velocities and accelerations for mobile robots with indepen-
dently steerable wheels,” in IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 2014.

[13] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional
curvature-constrained shortest-path problem,” Duke University, Depart-
ment of Computer Science, Durham, NC, USA, Tech. Rep., 2002.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal mo-
tion planning,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

45

https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FS-Rules_2018_V1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FS-Rules_2018_V1.1.pdf
https://www.formulastudent.de/fsg/results/
https://www.formulastudent.de/fsg/results/
https://www.formulastudent.de/fileadmin/user_upload/all/2019/rules/FS-Rules_2019_V1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2019/rules/FS-Rules_2019_V1.1.pdf

[15] S. LaValle, “Rapidly-exploring random trees: A new tool for path plan-
ning,” Iowa State University, Department of Computer Science, Ames, IA,
USA, Tech. Rep., 1998.

[16] S. Koenig and M. Likhachev, “D* lite,” American Association for Artificial
Intelligence, 2002.

[17] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based
path planning,” Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA, USA, Tech. Rep., 2005.

[18] Y. Xiong, “Racing line optimisation,” Massachusetts Institute of Technol-
ogy, School of Engineering, Cambridge, MA, USA, Masters Thesis, 2010.

[19] M. Bevilacqua, A. Tsourdos, and A. Starr, “Particle swarm for path plan-
ning in a racing circuit simulation,” Cranfield University, Cranfield, Bed-
fordshire, UK, Tech. Rep., 2017.

[20] P. Falcone, F. Borrelli, J. Asgari, T. H.E, and D. Hrovat, “Predictive active
steering control for autonomous vehicle systems,” IEEE Transactions on
Control Systems Technology, vol. 15, no. 3, April 2007.

[21] (2018, January). [Online]. Available: https://www.formulastudent.de/
fileadmin/user upload/all/2018/rules/FSG2018 Competition Handbook
V1.0.pdf

[22] H. Gavin, “The levenberg-marquardt method for nonlinear least squares
curve-fitting problems,” Duke University, Department of Civil and Envi-
ronmental Engineering, Durham, NC, USA, Tech. Rep., 2017.

[23] N. A. Group, “Exact first- and second-order greeks by algorithmic differ-
entiation,” 2011.

[24] S. Roweis, “Levenberg-marquardt optimization,” New York University,
Computer Science Department, Tech. Rep., 2009.

[25] X. Li, D. Du, and J. Cao, “Comparison of levenberg-marquardt method
and path following interior point method for the solution of optimal power
flow problem,” International Journal of Emerging Electric Power Systems,
vol. 13, no. 3, July 2013.

[26] M. Isaksson Palmqvist, “Model predictive control for autonomous driving
of a truck,” KTH Royal Institute of Technology, School of Electrical Engi-
neering, Stockholm, Sweden, Degree Project, 2016.

[27] P. Polack, F. Altché, B. D’Andréa-Novel, and A. De La Fortelle, “The kine-
matic bicycle model: a consistent model for planning feasible trajectories
for autonomous vehicles?” in IEEE Intelligent Vehicles Symposium (IV),
Los Angeles, CA, USA, June 2017.

[28] D. Lee, “Numerically efficient methods for solving least squares problems,”
University of Chicago, Tech. Rep., 2012.

46

https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FSG2018_Competition_Handbook_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FSG2018_Competition_Handbook_V1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2018/rules/FSG2018_Competition_Handbook_V1.0.pdf

	Significant Contributions
	Poster
	Executive Summary
	Acknowledgements
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Motivation
	Monash Motorsport
	Formula Student
	Formula Student Driverless
	Project Scope
	2019 Rule Update

	Literature Review
	Introduction
	Defining the Optimal Route
	Vehicle Model
	Decision-Making Architecture
	Global Planning
	Local Planning
	A Combined Approach
	Conclusion

	Overview
	Track Layout
	Competition Specifications
	Configuration Space

	Discovery Lap
	Discovery Lap Algorithm

	Optimal Racing Line
	Track Discretisation
	Racing Line Representation
	Leapfrog Integration
	Constraints
	Optimisation
	Minimisation Formulation
	Levenberg-Marquardt Algorithm
	Automatic Differentiation
	Constraint Implementation
	Choosing Parameters

	Component Scaling
	Performance

	Model Predictive Control
	MPC Overview
	Initial Implementation

	Computing
	Hardware
	Software
	Platform
	Numerics Library

	Conclusion
	Future Work
	Links

