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SUMMARY 
Formula Student and Formula SAE are two design and build engineering competitions, based on 

an automobile racing environment (https://www.formulastudent.de/fsg/). Formula student teams 

in the early 2000s became aware that aerodynamics even at the low average speeds of a formula 

student circuit can have a positive effect on performance. In the beginning, teams focused on a 

front and rear wing concepts, although now many teams also use underbody aerodynamics. 

This project aims to expand on Monash Motorsports (MMS) tools for analyzing aerodynamics effects 

on performance by examining how changes to the vehicles attitude effects the aerodynamic load and 

moments on the vehicle. These tools were designed analyze and predict the flow about the car as it 

moves around the track and changes attitude. The main tool developed was the aero map which aims 

to predict aerodynamic force and moments as a function of front and rear ride height, roll, steer and 

crosswind angle (yaw). Analysis tools in MATLAB and MoTeC were also discussed as they help draw 

the maximum value from the aero map.  

The simulated flow was also validated with the Monash Wind Tunnel to determine the strengths and 

weakness of the CFD predictions. A differential pressure measurement system (DPMS) was developed 

as a tool to analyze aerodynamic pressures on-track to better understand how the vehicles attitude 

affects flow structures on the car. This helps increase confidence and understanding from the 

simulated values to further increase the aero maps effectiveness. 
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1. INTRODUCTION

Formula Student and Formula SAE are two design and build engineering competitions based on an 

automobile racing environment (https://www.formulastudent.de/fsg/). Formula student teams in the 

early 2000s became aware that aerodynamics even at the low average speeds of a formula student 

circuit can have a positive effect on performance. In the beginning teams focused on a front and rear 

wing concepts although now many teams also use underbody aerodynamics. 

The complexity of the aerodynamic designs by the MMS have progressively become more aggressive, 

complex and reliant on ‘ground effect’. Ground effect is sensitive to ground clearance which 

changes as the race car moves around the track. MMS has yet to address the problems with 

predicting and understanding the effects of vehicle attitudes on aerodynamic performance and 

vice versa. The attitude of the vehicle in this report will not use the standard vehicle dynamic 

system of using heave, pitch, roll (angles between the chassis reference and ground reference) and 

steer instead the vehicle attitude will be characterized by FRH, RRH, roll, steer and yaw. 

Figure 1 shows histograms of the vehicle attitudes from the fastest endurance lap of the 2018 Formula 

Student Germany Competition. 

This yaw angle can be attributed to two primary causes, cross winds and vehicle slip which occurs 

when the vehicle is driven to the limit of grip and all 4 tires experience slip. While vehicle speed can 

influence the Reynolds number and hence the amount of turbulence in the flow. This report uses a 

standard of 16.67m/s vehicle speed as wind tunnel tests by MMS have shown that the vehicle is 

Reynolds independent. 

An aerodynamic force map (aero map) describes the aerodynamic forces and moments of the vehicle 

across its feasible attitude parameters (FRH, RRH, roll, steer and yaw). It would be ideal to create a 5-

dimensional matrix for each of the six components of the forces and moments however this would 

create a variety of challenges including the size of the matrix which in this case could have more than 

6000 elements and hence require 6000 simulations. With each simulation taking 6 hours the total time 

for the simulations would be 36000 hours or approximately 4 years!  

https://www.formulastudent.de/fsg/
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Figure 2 is a demonstration of the aero map for the X force component (ie drag) across the mapped 

parameters. 

Hence this paper simplifies an aero map to a 6 by 6 ride height map (FRH v. RRH), 3 roll angles, 5 

steering angles and 5 yaw angles. Each attitude in the map is a variation on a baseline which means 

that only 47 simulations are required to create the map which takes 3 days to simulate on the 

MonARCH (Monash Advanced Research Computing Hybrid) Cluster and whose results for the Cx 

values can be seen in Figure 2. 

For the aero map not to become just an aesthetic plot but a design tool a variety of analysis tools 

must be created to allow engineers to use the data contained in the map to predict the effect of 

setup changes and determine where to focus their design efforts. By automating the map process 

this allows designers to focus on analysis and on developing tools for validating the simulations with 

on-track and wind tunnel data and use the on-track data for tuning and vehicle development.    

2. SIMULATION SETUP

A complete rework of the simulation methods used by MMS aerodynamics team between 2008 and 

2017 was needed to make it practical to complete simulations at various attitudes and batch process 

across a map of attitudes. The old method involved the use of ANSYS work bench and ANSYS CFX 

which posed a variety of issues for automation namely that the process could not be automated. The 

first issue is that the geometry – including the fluid domain – is produced in the team’s CAD software 

(Siemens NX 12.0) which means that either the geometries needed to be created by the CAD 

software – which didn’t have an elegant solution – or the simulation script needed to create the 

domain which was very difficult if not impossible with ANSYS workbench.
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Figure 3 is a representation of the key steps to complete a scripted Fluent simulation. 

This was the first factor which pushed for a change in simulation package the next factors were that 

CFX didn’t allow for scripting and that ANSYS had ceased to support CFX preferring to support the 

industry favorite of Fluent which they also produced. This meant that the team members using the 

new simulation setup would have skills better aligned to the software that they could use in industry. 

Fluent’s popularity in industry comes from two primary factors; it has a simple and usable scripting 

language and that both the mesh generator and solver are operated within the same GUI which would 

allow for one script – actually three – to complete an entire simulation. 

2.1 CAD Layout and Geometry Export 
To make the simulation process independent of which CAD package the team chooses to use and 

because the cluster is unable to recognize NX CAD parts each of the components has to be exported 

as its own individual Parasolid – a generic CAD part type – which not only helps separate the wheels 

from the rest of the components but also helps separate faces into their own name selection so that 

they can be identified in post processing. It is expected that some faces will intersect with each other 

and that some components might be almost entirely contained by other components however some 

care should be taken to avoid; faces which are perfectly overlapping, angles more acute that 20 

degrees and components with clearance below 10mm – in which case the components should just be 

made to overlap. Further the suspension should be made to overlap so much with the wheels so that 

none of the above issues would appear at extreme attitudes as the suspension moves while the wheels 

stay stationary or turn. 

In Figure 4 while it is not clear from the images each wheel is not only is own separate part but also 

the wheels bends are separate parts with nearly identical names. This is done because down the line 

the wheels will have a different boundary condition to the blends however in all other situations they 

should be treated as a single unit. 

Each components Parasolid file name must follow a predefined pattern because the simulation setup 

relies heavily on wildcards to maximize the flexibility of the process for the number of components 
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present. Fluent will only import Parasolid files with the prefix “cfd-“ which means that every 

components file name needs to start with “cfd-“ for it to be included in the simulation hence why all 

the names in Figure 5 have the same prefix. 

Figure 4 shows the individual Parasolids imported into Fluent which will describe the boundary names in the 

force and moment summaries. 

The next part of the name can take one of two paths, either it can have a required name such as 

“default”, “wheel” or “suspension” or it can be identified as “wing”. All elements which do not follow 

this pattern will be lumped in with “default” and meshed with a low-resolution inflation layer and 

large element sizes. The “suspension” group is used because the default face resolution is not 

adequate to capture the suspension tube sizes and hence the extra name only means that the 

suspension gets a slightly finer resolution mesh to capture the tubes. The “wheel” group is used to 

separate all the wheels with their appropriate blends so that they can be excluded from the sprung 

elements when they have their attitude applied and have the steering applied to the fronts separately. 

Figure 5 shows the files and their file name formatting when completing a simulation 
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The rest of the elements – radiators are currently treated as default – are classified as “wing” even if 

they are a bodywork element. The grouping “wing” just identifies components which need fine surface 

mesh resolution and a large number of inflation layers. All the elements will keep their name, except 

for the prefix “cfd-”, throughout the scripted simulation so that parts can be separated into individual 

faces if the force on that face can be a separate output. 

2.2 Geometry Importing and Attitudes 
Once the parts have been imported their name is transferred to being their label and all the 

components which are not the wheels and their blends are grouped as an object called “sprung” – 

highlighted in the maroon color in Figure 6 – this is the object which the ride heights and roll is applied 

to. 

Figure 6 shows the vehicle model with highlighting to show the separation of components when the attitudes 

are applied 

While the rear wheels can be grouped together because they do not steer the front wheels are 

grouped separately so that they can be steered about their individual steering axis. Once the parts 

have been separated into their groups that attitude definition file can be imported. 

Table 1 breaks down the parameters in the "attitude.jou" file 

Variable Name Description 

frh Front ride height is an attitude parameter 

rrh Rear ride height is an attitude parameter 

roll Roll angle is an attitude parameter 

steer Steer angle is an attitude parameter 

yaw Yaw angle is an attitude parameter 

wb Wheel base is a vehicle parameter so should be left constant except for during 

concept changes 
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tw Track width is a vehicle parameter so should be left constant except for during 

concept changes 

rh The static ride height is the ride height the vehicle is at in the CAD model 

rch The roll center height is the Z coordinate of the origin of the roll axis 

Once the attitude parameters have been imported the attitude can be applied to the imported 

geometry as described by the meshing overview in Figure 7 which highlights that while all the other 

parameters are easy enough to apply yaw presents an issue which is tied to the mesh generation. The 

volume within the simulation is filled with cubes (equilateral hexahedron mesh called hexcore) which 

are aligned with the coordinate system within Fluent. It is best to have the hexcore align with the 

domain because the fluid flows along the domain and hence along the cubes. However, this makes 

post processing more difficult because the car will be yawed at different angles for different 

simulations so after the mesh is generated the yaw is removed which results in the car being aligned 

with the coordinate axis and the domain and the hexcore ends up at the yaw angle which will also 

facility applying the rotating wheels in the solver as they remain in the same location as CAD. 

Figure 7 shows the how the attitude is applied to the model in the context of the entire meshing process 

(*Fluent meshing works in mm while Fluent solver works in m) 

Applying the roll, steer and yaw is the relatively simple process of applying the rotation transformation 

about a single axis compared to applying the ride heights which requires a 3-step process outlined in 

Figure 8. To simplify the process the vehicles static ride height is remove so that the vehicle technically 

has zero front and rear ride height this means that pitch can be applied about the primary axis. The 
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pitch is applied about the front ride height point so the pitch angle which produces the correct delta 

between the front and rear ride heights is calculated. This then means that when the front ride height 

is added the rear will be at the specified height. 

Figure 8 shows the process of applying the ride heights to the vehicle 

Once the vehicle is at the correct attitude the fluid domain is created and the faces are labelled as 

inlet, outlet, ground and walls. This results in the domain being aligned with the coordinate axis and 

means that after the domain, sprung and wheel objects are united the size field can be created with 

all the refinement zones which are be deleted as soon as the size field – which defines the element 

sizes – is created. This leads on to the most import part of this simulation process: surface wrapping. 

This is what allows the whole attitude process to work because without it the simulation could not be 

completed at a parameterized attitude. 

Once the surface mesh is wrapped the old mesh is discarded and the fluid volume for the volume 

mesh is calculated but only after the surface mesh quality is improved. The first step of improvement 

tries to move nodes to improve the surface quality below 0.6 skewness then any elements which could 

not be corrected are removed. The process of removing the bad elements by collapsing them, which 

does reduce accuracy of the surface but by a tiny margin, has little to no effect on the results. 

Figure 9 shows an example of the poly hexcore mesh produced by Fluent (https://www.ansys.com/-

/media/ansys/corporate/social/fluids/meshing_1200x600.jpg) 

The Poly Hexcore mesh is then produced automatically by the Fluent Mesher using the sizing field 

generated just before the wrapping process. This meshing style was chosen because it provided the 

https://www.ansys.com/-/media/ansys/corporate/social/fluids/meshing_1200x600.jpg
https://www.ansys.com/-/media/ansys/corporate/social/fluids/meshing_1200x600.jpg
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best memory efficiency for any given resolution (Hashan, 2018) and produces elements with better 

quality which helps the solver produce more accurate and consistent results (ANSYS help) this is 

thanks to the majority of the volume having a consistent structure of elements and the surfaces 

consisting of polyhedral prisms which produce inflation layers with the same number of layers but 

with 20% of the elements. Even though the polyhedral prisms utilize twice the RAM (Hashan, 2018) 

this still results in a reduction of memory usage of more than 50%. 

Once the mesh has been generated a procedure called “auto node move” attempts to improve the 

mesh quality further. This results in the worst element having a skewness of 0.8 compared to before 

the improvement where the worst element can be as high as 0.99. 

Once the geometry is imported, the attituded is applied, the mesh is produced, the domain is scaled 

from mm to m and the domain is yawed so that the vehicle is not, the script process for Fluent Meshing 

is completed and the mesh is saved before switching to the Fluent Solver. Where the boundary 

conditions, turbulence model and solver parameters are set before the model is solved. 

2.3 Boundary Conditions 
The boundary conditions are very simple for this simulation because it involves only straight flow 

through the tunnel and with a potentially yawed vehicle. The yawing and steering presented the 

biggest challenge for modelling the rotating wall of the tires because transformations had to be done 

to ensure that each tire rotated about the correct axis. However, even this challenge can be overcome 

with some simple trigonometry and vector calculations based on only the steer angles thanks to the 

fact the car is kept straight while the wind tunnel is yawed. 

Table 2 shows the boundary conditions for the CFD simulation 

Boundary Condition Description 

Walls (specifically top and 

sides) 

Free Slip Boundary Condition This boundary conditions 

means that while the air cannot 

pass through the wall the wall 

will not generate a boundary 

layer. 

Inlet Even 16.67m/s (60km/h) flow 

normal to the wall 

Outlet Even 0 Pa gauge at the wall 

Ground 16.67m/s velocity with the flow 

of air 

This boundary condition 

models the ground moving 

under the vehicle. 

Wheels Rotating about their individual 

centers at 74.55 rad/s 

This boundary condition 

models the wheels turning 

Wheel blends Free Slip Boundary Condition With rotating tires the region 

between the tire and the 
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ground becomes challenging 

for the model so blends with 

free slip are added to reduce 

the modeling difficulties. 

Vehicle Boundaries No Slip wall The no slip condition causes 

boundary layers to form on 

these surfaces as they would 

on any normal wall. 

2.4 Solver 
Once the model has been defined Fluent has to be told how the problem should be solved which can 

have a large effect on the accuracy of the solution, the memory required to solve and the time it takes 

to find a solution. Two white papers from ANSYS helped select settings which could find a solution 

quickly and consistently. To align with the team’s need to iterate through a large number of models 

and to ensure that the aero map could be produced in less than a week the Pressure Coupled Pseudo 

Transient Solver (PCPTS) from Fluent was selected. Swapping from a segregated solver to the 

pressure-coupled solver can result in simulations taking a fifth of the time but does require up to 50% 

more computer memory (Kelecy, 2008). In 2010 ANSYS introduced a pseudo transient solver as a 

subset of the pressure-coupled solver which could reduce the number of iterations required by 

between half and a tenth of the time (Keating, 2011).  

Keating (2011) also showed that the hybrid initializer in Fluent could help start from a point closer to 

the solution which can reduce the number of iterations by a further 15%. This was the primary reason 

why the hybrid initializer was used although it proved to also help avoid instabilities during the early 

phases of solving. Some time was spent setting up the interpolation of previous results for initialization 

except this proved to be unstable especially when the vehicle was at different attitudes. 

Using these setting meant that a solution where the forces had converged could be reaching within 

120 iterations compared to the previous solver which required 600 or more to reach an acceptable 

solution. This meant that the RAM requirements were 50% higher (48GB to 75GB) but the solution 

could be reached within a quarter of the time. While the RAM requirements could cause an issue for 

solving the MMS team gained access to the MonARCH Cluster which meant that RAM was no longer 

a limitation for solving. 

3. AUTOMATED RUN SUBMISSION AND RESULT PROCESSING

A key part alongside fully scripted simulations is being able to specify the attitudes required in an 

easy and flexible manner. This section covers all the automated processes created within this 

process to make submitting runs to create a map easy so that it can be used as part of a normal 

design period and within the team were member time is at a premium. 

3.1 Generating Flexible Code 
This subsection defines how the Python class was defined and how to use it while the next subsection 

will describe the exact script for creating the map shown in this paper. 
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Python was selected because it allows for readable and intuitive scripting with object orientated 

programming (OOP) which was used here to create a class (object) called “sweep”. An object contains 

variables and functions – which either reads the objects variables or adjusts them – which means that 

all the steps to setting up a batch of simulations can be contained within the object – from defining 

the attitudes with no repeated attitudes, creating the attitude journals, creating folders for all the 

runs, submitting the runs to the cluster then after the simulations reading the outputs and organizing 

the results into a .csv file. 

Figure 10 is a representation of the batch process for generating the aero map 

The sweep class relies heavily on dicts (long named dictionaries) which are a variable type in Python 

which store values based on keywords. They can be very useful because in our case every number is 

useless unless it comes with a parameter, so our parameters are keywords. Strings can also be 

formatted based on a dict for example: 

 myDict = {‘name’ : ‘John Doe’, ‘age’ : 25, ‘height’ : 190} 

 myString = ‘Hi my name is {name} I am {age} years old and {height} cm tall’ 

 print(myString.format(**mydict)) 

 >>> Hi my name is John Doe I am 25 years old and 190 cm tall 

This method is used to create the contents of the attitude.jou file used to differentiate each 

simulation. So, each case within the object is just a dict of each parameter with its value plus if you 

have “collected” after simulating the force and moment values (named ‘force.x’, ’force.y’, ‘force.z’, 

‘moment.x’, ect.) 

Table 3 is a table which describes the methods within the sweep object 

Function 

(Method) 

inputs Description 
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__init__ base: should be a dict which contains 

the values for the parameters at the 

baseline attitude. 

attitude: is a string which contains 

named formatted strings (using 

{NAME}) in the place of the parameters. 

baselineval:  is the position of the 

baseline (usually unused) 

setval: is just a counter starter (usually 

unused) 

No inputs are required, however it is 

suggested that the base dict is provided if 

you are setting up a sweep. This is the 

function called when the object is 

created.  

Example: 

myAeroMap = sweep(base = {‘frh’ : 
35, ‘rrh’ : 35, ...} 

add keyword arguments: these are flexible 

arguments used within python . (see 

description) 

The formatting comes in as “parameter = 

value” which is then converted in to a 

dict. When you don’t provide a value for 

all the parameters the remaining 

parameters are assumed to be the same 

as the baseline. The function will also 

check that the case isn’t identical to any 

of the other cases to avoid repetition. Say 

you wanted to add a case with FRH = 50 

and RRH = 20 to your sweep the code 

would look like this: 

myAeroMap.add(frh = 50, rrh = 20) 

This function returns the dict created for 

this case which was added to the list of 

cases. 

get n: says what the reference number of 

the case is. 

Returns the dict of case number n in cases 

variable. 

get_attitude n: says what the reference number of 

the case is. 

Returns the string for the contents of the 

attitude journal file. 

save filename: the name of the saved file 

(defaults to ‘sweep.data’) 

This saves all the case data to file so that 

it can be reread after the simulations have 

been completed or if a sweep is being 

repeated. 

load filename: the name of the saved file 

(defaults to ‘sweep.data’) 

This reads out the file that contains the 

cases and saves it to the cases list. 
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setup save: is a Boolean which tells the setup 

function if it should save the cases to file 

by default (defaults to True) 

start: is a Boolean which tells the setup 

function if it should start the 

simulations (defaults to True) 

This function will create the sub-

directories and then copy the ‘sweep.sh’ 

in the same directory as the Python script 

into the subdirectory then create the 

attitude file then submit the case to the 

cluster (note: the script must be run on 

the cluster!). It will do this for each case. 

collect save: is a Boolean which tells the collect 

function if it should save the cases to file 

by default (defaults to True) 

load: is a Boolean which tells the setup 

function if it should load the cases from 

file at the start (defaults to True) 

This function will look through the results 

files and collect the 3 components of the 

force and moment coefficient then save 

them into the object. 

export filename: the name of the saved file 

(defaults to ‘map.csv’) 

Saves all the cases data to a csv file note 

that this will not have forces if collect 

hasn’t been run. 

The code relies on the ‘sweep.sh’ file copying the required files from a pre-set master folder except 

for the attitude file and that the resulting forces are summarized in the force.txt and moment.txt files 

otherwise the map.csv cannot be collected. 

3.2 Submitting Batch Jobs 
Appendix 9.2 contains the code to be run on the cluster in Python 3.6 to step up the aero map sweep. 

The code is very simply structured to define the baseline parameters, define the swept values of the 

parameters, create the sweep then add the attitudes to the sweep. Because the ride height map 

involves two parameters it requires nested for loops with two parameters being changed in the 

“sweep.add()” module. All the other attitudes involve single for loops through each of the parameters 

possible without skipping what would be the baseline value because the object checks whether the 

simulated attitude is a repeated version of any other attitude. Once all the attitudes have been added 

to the object all the user needs to do is call the “sweep.setup()” method which automatically saves 

the attitudes and submits all the simulations to the cluster. 

Once the simulations have been completed a new script reads in the saved attitudes and collects all 

the force and moment data into a CSV file which also contains the attitude information. This file can 

then be imported into MATLAB, opened in Excel and with some processing added to a MoTeC i2 Pro 

work book. 

4. USING THE AERO MAP

This section will demonstrate how to utilize the data from the aero map to assist with the operation 

and development of a formula student race car. The areas of application will cover an aerodynamics 

model for vehicle modeling and simulation which will become an essential part of MMS with its new 

driverless car. When implemented properly the simulation tool can also be used to determine the 
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sensitivity of each point on the aero map to help the aerodynamics design team focus on the most 

important attitudes. 

There will also be some focus on visualizing the data with MATLAB and importing the map into MoTeC 

i2 Pro (the data logging and visualization tool used by MMS) to analyze the potential effects of a setup 

change on the vehicle attitudes and hence the aerodynamic loads.  

Figure 11 is a plot of front and rear ride heights over a lap with annotations of what each cluster represents 

in terms of vehicle conditions. 

In Figure 11 above there is a scatter plot of the vehicles ride heights around a lap which is important 

to understand because it can help with deciding on a design point as well as attempting to select a 

more optimum ride height setup for the vehicle. The essential parts of the map are the clusters for 

braking and cornering when looking at vertical load while reducing drag down the straights. The region 

directly between braking and straights (highlighted in aqua) is the region where the vehicle transitions 

into braking and is separate from the cornering cluster. 

Figure 12 shows the scatter of ride heights between two distinct setups where the cornering cluster is placed 

closer to the peak load region. 

By decreasing the front ride height by 10mm and the rear ride height by 5mm the cornering cluster 

can be better placed on the region of peak load which can be seen in Figure 12. This means that the 

vertical aero load can be increased during cornering when it is needed while sacrificing performance 
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on the straights where it is not needed. This can be seen in Figure 13 which shows a map of the German 

competition track which is highlighted by vertical load delta between the original setup and the new 

setup. This method of adjusting vehicle setup to position vehicle attitude could be just as easily done 

to influence how balance moves between cornering, braking and the straights. 

Figure 13 shows a track map highlighted based on the setup change above. 

4.1 MATLAB Aerodynamic Function 
The Aerodynamic function just returns 2 3-dimensional vectors for the aerodynamic force and 

moment of the vehicle based on FRH, RRH, roll, steer, yaw and speed. The biggest challenge is with 

converting the data produced into a map given that there is no combination of that data that works 

out of the box. The structure of the map which is baselined to a fixed attitude means that each 

parameter can be evaluated as a delta to the baseline attitude. 

The baseline attitude is combined with the ride height map for simplicity but for the rest of the rest 

of the parameters the baseline values are subtracted to get a delta to the baseline for all the 

parameters. 

Table 4 shows the values for each parameter at the baseline attitude. 

Front Ride Height 
(mm) 

Rear Ride Height 
(mm) 

Roll 
(degrees) 

Steer 
(degrees) 

Yaw 
(degrees) 

35 35 1 8 4 

The predicted value – could be any or every component of either the aerodynamic forces or moments 

– is the sum of each map – a 2D map for ride heights, and 1D maps for roll, steer and yaw – then the

baseline values have to be subtracted 3 times –subtract the baseline values once for the 4 maps then

add it back on once to get a net of 3 subtracts. This is shown symbolically in Equation 1.

Equation 1 shows the generic approximation of forces and moments from the aerodynamics of the vehicle 

𝑉𝑎𝑙𝑢𝑒 = 𝑅𝑖𝑑𝑒𝐻𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑝(𝐹𝑅𝐻, 𝑅𝑅𝐻) + 𝑅𝑜𝑙𝑙𝑀𝑎𝑝(𝑅𝑜𝑙𝑙) + 𝑆𝑡𝑒𝑒𝑟𝑀𝑎𝑝(𝑆𝑡𝑒𝑒𝑟) + 𝑌𝑎𝑤𝑀𝑎𝑝(𝑌𝑎𝑤)

− 3 × 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑉𝑎𝑙𝑢𝑒
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Figure 14 shows the maps for the Z components (lift) of force across all the 5 parameters that would be used 

in Equation 1. 

Appendix 9.5 shows the MATLAB code for this process although it should be taken as pseudo code for 

any programming language that it is needed in for vehicle modeling in the future. This function would 

be able to replace the aerodynamic model in whatever vehicle simulation suite being used by MMS. 

4.2 MATLAB Visualizing Data 
Visualizing the data produced is one of the most important parts of utilizing the data produced by 

completing an aero map and MATLAB is the best way to produce plots to understand the results and 

evaluate changes if any are made. An essential part of having the map data within MATLAB is to 

structure the data in such a way which makes it easiest to access the desired data with the least 

number of transformations. The script “map_generate.m” within the “map” project folder that 

accompanies this report structures the data for just this purpose using MATLABS “struct”. 

• map
o rhs (Ride Heights)
o roll
o steer
o yaw

Under each value are 3 arrays called “values”, “force”, “moment” and a struct called “name” which 

contains a short and long name as well as the units for the parameter. “values” Contains all the unique 

values which that parameter can hold while “force” and “moment” contains the 3 components of the 

force and moment for each of the values. This means plotting the Z component of force vs roll angle 

is as simple as the code in Figure 15. 

plot(map.roll.values, map.roll.force(:, 3)) 
Figure 15 code demonstrating structure of map struct (note: roll could be swapped with steer or yaw with 

no other changes required) 
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Using the strings contained under “name”, plots can also be generated in batch because in the case 

of Figure 15 the X axis label can be created using the long name variable and units which can be seen 

in the code in Appendix 9.6 where the plots for roll, steer and yaw are produced in a single for loop 

rather than requiring the repetition of code. 

MATLAB can also, with ease, create animations from images so with the images generated in Section 

9.5 and data exported directly from MoTeC i2 Pro containing the front and rear ride heights for a given 

amount of driving to generate an animation of the pressures under the car as can be seen in Figure 

16. This allows for the visualization of loads during driving which can help with visualizing the

aerodynamic loads and how they transition around a lap.

Figure 16 shows the first frame of the pressure animation generated by a MATLAB script. 

4.3 MoTeC i2 Pro 
MoTeC i2 Pro is one of the best racing data analysis tools available and while it is free, it requires 

MoTeC hardware to produce log files which it can read. The Monash Motorsports (MMS) team has 

been using MoTeC software and hardware since before 2008 so it has become a key part of testing, 

tuning and development on the team but has been lacking any aerodynamic data until now. This 

section discusses how to add the aero map data to MoTeC so that the performance data of the aero 

package can be plotted with the rest of the vehicle data to better understand the effect 

aerodynamics are having on the vehicle around the track. 

Figure 17 shows how a variable table in MATLAB can be copied straight into a 2D math table in MoTeC i2 Pro 

to create a CLA prediction based on ride height 
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For the ride height map to be transferred to i2 Pro it needs to be converted into a 2D array which can 

either be done with MATLAB or with an Excel Pivot Table then as shown in Figure 17 the entire table 

can be copied in one go from either MATLAB or Excel straight into i2 Pro which make the entire process 

very easy. Then a 1D map for roll and steer – yaw angles are not logged and cannot be calculated – 

can be added as well this is the same process as the 2D map except the data should be in a column. 

All three data channels can then be added to each other and 2 time the baseline value subtracted to 

get the predicted value based on ride height, roll and steer. 

5. VALIDATION

While simulation techniques have improved the predictions of time averaged turbulent flow still 

hasn’t reached a point where it can be trusted out of the box especially when the model is simplified 

such as in this situation. While using a wind tunnel allows for a controlled environment it limits the 

number of parameters to 1 – yaw angle – which means that it cannot validate the most important part 

of this project. Hence, on-track validation is required to validate the aero map which also opens the 

door for on-track design and development. 

5.1 Wind Tunnel Validation 
While the wind tunnel does not allow for data to be collected at different vehicle attitudes it does 

allow for results to be collected which would be infeasible on-track such as a sweep for 10 4-hole 

probes on a rake which swept through various heights to generated the data in Figure 18 which was 

only a subset of the highly detailed data produced by the rake sweep. The strengths and weakness of 

the computer simulation can be seen within the data in Figure 18 and Figure 20. 

Figure 18 shows the total pressure in Pascals for both the wind tunnel and computer simulation at the plane 

shown in the image below. 

The computer simulations are completed as Reynolds-Averaged versions of the incompressible 

Navier-Stokes equations which means that the transient nature of the flow is simplified to a steady 

state solution. As the flow becomes more turbulent and hence time dependent the time averaged 

solution begins to lose its accuracy. In Figure 18 the computer simulation data appears far smoother 
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especially around the nose wing vortex at Y=420mm, Z=680mm which in the wind tunnel data consists 

of a tighter vortex with higher even pressure around it. While there is data lacking in the wheel wake 

region at around Y = 600m for the wind tunnel the region below Z=500mm and inside Y=500mm shows 

a very different pressure profile between the CFD which predict very low energy compared to the 

wind tunnel which showed total pressures between 0 and 50Pa compared to CFD with values below -

50Pa.  

Figure 19 Shows the setup of the rake in the wind tunnel when the data was collected. 

Figure 20 shows the percentage error in total pressure between the wind tunnel and computer simulations. 

Figure 20 highlights the error regions which occur primarily in the front wheel wake and front wing 

wake which are both below Z=600mm while the region with the nose wing vortex and free stream 

flow show little to no error. This confirms the expectation that the CFD is very capable of predicting 

the flow in regions with low to no turbulence but is unable to predict the flow in turbulent regions 

behind the vehicle. 
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The simulation data seems to smooth out the turbulent regions and exaggerate the low pressures in 

the wing wake. This would indicate that the CFD can predict the structures and their locations well 

but is unable to predict the effect the structures have on the rest of the flow. 

5.2 On-Track Methods for Validation 
While the team has produced differential pressure measurement systems in the past, they have never 

been able to produce valuable results because while they met the primary goal of measuring pressures 

the readings were never produced in the context of the rest of the car or in a time efficient manner. 

To ensure that the system developed within this section of the report can become an effective tool 

the objective and requirements of this system had to be well described. 

The best place to start is in some analysis of the strengths and weaknesses of previous designs which 

each got used a maximum of twice due to the complexity of the systems and the requirement of the 

designer to operate it. A system which can be operated by any team member and be used with little 

to no understanding of the system would allow it to have a longer effective life and add more value 

from each use.  

The previous systems also logged the pressure data onto an SD memory card as a comma separated 

values (CSV) file which while it did provide easily readable and analyzed data there was available 

context for the data which is essential to analyze an aero map. The context of the data would include 

information such as suspension position – which is used to calculate ride heights and roll angles – 

steered angle, speed, acceleration and track position all of which helps the analyst understand what 

the vehicle was doing at each point the pressure was measured. 

Table 5 shows the design requirements and specifications of the differential pressure measurement system 

Requirements/Specification Description 

Measure aerodynamic pressures on the vehicle -3 to 1 CP at 120 km/h = (-3 * 680Pa or -2kPa to

680Pa)

Measure with accuracy and resolution Accuracy +/- 5Pa, Resolution +/- 1Pa 

Sample fast enough to average turbulence 1kHz 

Work on vehicles CAN-BUS with minimal 

disruption  

No more that 1% of 1Mb/s CAN-BUS so 10kb/s. 

Each tap is 16 bits with 24 taps that makes 384 

bits except a CAN message contains only 50% 

data so that means 800 bits per sample. So 

~10Hz data rate. 

Be logged with vehicle data by MoTeC data 

logger 

This can be done either with a CAN expander or 

by logging directly to the CAN-BUS 

Can be mounted easily anywhere on the car The more compact the system the better 

because that means it can fit anywhere on the 

vehicle which means that a wider range of 

components can be tested. 
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Log a maximum number of taps with one unit. Between 16 and 32 pressure taps would be 

required to make the system useful. 

What would be ideal is an “off the shelf” solution from the motorsports industry however given that 

it is the motorsports industry the prices for these kinds of units can be nearly $4000 AUD 

(https://www.motorsportselectronics.com/products/texense-16xpdif-16-channel-differential-

pressure-sensor?variant=21334340740). Techmor offers a solution which can be seen in Figure 21 

that offers an excellent product at a more reasonable price however with a student team budget and 

no guarantee that the solution would be used more than once the first attempt was not going to be 

off the shelf. 

Figure 21 Techmor’s $2000 solution which would be perfect (https://www.techmor.com/aero-pressure-

sensor-array-ap-1/) 

The first step to designing the system was selecting a pressure transducer which could either output 

a digital or analogue signal. While a digital signal could be advantageous for low noise it introduces 

complexity especially with the last DPMS whose sensors all had the same digital ID which removed 

the advantage of having digital sensors by requiring a multiplexor which also meant that the sample 

rates were around 10Hz. But if an analogue sensor was to be selected a device with 16 or more 

analogue in channels would be required. The transducer which best met the requirements of +/-2kPa, 

analogue and 3-5V operating range was the MPXV7002DP which met all the requirements and cost 

$14 each compared to the $125 per transducer price tag from Techmor. While the two holed version 

of the transducer was purchased in hind sight if a duplicate system were to be made it is suggested 

that only the single port version of the transducer be purchased because the reference adds more 

complexity that it is worth given that one transducer could be used as the reference. 

Figure 22 the MPXV7002 in both the differential (right) and gauge pressure (left) layouts (source: NXP data 

sheet). 

https://www.motorsportselectronics.com/products/texense-16xpdif-16-channel-differential-pressure-sensor?variant=21334340740
https://www.motorsportselectronics.com/products/texense-16xpdif-16-channel-differential-pressure-sensor?variant=21334340740
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Given that the transducers were analogue the microcontroller for this system needed to have more 

than 16 analogue pins and had to meet the other requirements of CAN capabilities, 12-bit read 

resolution and to be compact in size. The Teensy 3.5 was met all these requirements with the 

advantage of being programmable in the user-friendly Arduino environment which was very 

attractive. All other Arduino based products required CAN shields that were as large if not larger than 

the Teensy and the microcontrollers where usually larger than the Teensy. The Teensy 3.5 has 26 

analogue pins and only requires a tiny adapter to convert a digital signal to the CAN high low standard. 

Figure 23 shows the Teensy 3.5 with the CAN adapter overlaid over it. Teensy 3.5 size (62.3mm x 18mm) 

(https://www.tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/) 

The better the transducers could be packaged the smaller the pressure array could be and with 24 

taps in a 6 x 4 array reducing the spacing between units by 5mm would reduce the volume by 40% 

which is very significant. This meant that mounting all the transducers onto one printer circuit board 

(PCB) while simpler electronically would result in a volume 5 times larger than the layout selected 

which can be seen in Figure 24. 

Figure 24 shows the CAD assembly of the system with each PCBs transducers highlighted differently to 

highlight the tight packaging within the box. Left: isometric of front face, middle: back view and right: 

isometric of back face 

Each PCB could take 6 pressure transducers (3 on either side) such that they would tesselate as seen 

in Figure 24 which meant that each PCB had 8 pins – one for each channel plus power and ground –

the power and ground could be spliced together from each PCB. Although it would be logical to think 

that only 4 PCBs were required to achieve optimal tessellation the end units only held 3 taps so 5 PCBs 

had to be used. Each PCB had the 3 capacitors defined in the MPXV7000 spec sheet for each 

transducer to condition the supply voltage and signal. Otherwise the supply voltage was connected to 

the 5V input which also powered the Teensy via the supply pin. The standard 4-Pin DTM connector 

layout for CAN devices on the car comes with CAN-High, CAN-Low, 5V Power and Ground which means 

https://www.tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/
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that all the devices (bar the CAN adapter which runs off a regulated 3.3V output on the Teensy) can 

be powered directly from the connector pins. 

Figure 25 shows the electrical diagram for the PCB which holds the transducers. 

Figure 26 shows both sides of the PCB as it was printed. 

Once the system was electrically assembled the challenge became connecting the fragile transducer 

ports to steel M3 barbs for easy and robust tube connections via a solid header. The early attempts 

to build a header used ABS plastic which was 3D printed primarily because it allowed for internal 

channels to connect the reference lines. The ABS failed to be strong enough to hold the M3 Barbs and 

to be stiff enough when the header was tightened so the ABS solution was taken as a prototype and 

an aluminum equivalent was CNC machined without the common header for the reference lines.  

This also meant that the header and O-ring compression plate were stiffer which meant that the O-

rings would be held under more consistent pressure and provide a good seal even for the transducers 

furthest from the compression plate bolts. 
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Figure 27 shows a detailed cross section of the sealing interface used to connect the taps port with the M3 

barbs. 

Generating a proper seal was one of the biggest challenges with producing the DPMS because the 

ports on the transducers were so small that non custom O-rings wouldn’t fit the ports and because 

sealing required the very precise positioning of the O-ring. The ports on the transducers had to be 

expanded with some 4mm ID Nylon tube from SMC to fit the 5mm O-rings with enough pressure to 

seal. The chamfers seen in Figure 27 also helped seal the transducers by compressing the O-ring as 

the blue section was tightened to the orange section. This means that during assembly the taps had 

to be clamped down before the O-ring compression plate was tightened or the transducers would not 

seal properly. 

3D printed bracing bars were used to hold the transducers onto the header before the compression 

plate was tightened to produce the best seal. Once tightened it is suggested that the braces are left 

on even though the O-rings are sufficiently tight to hold the transducers in place. Once the sensors 

are properly mounted to the aluminum header. If the system is wired correctly, before bolting down 

the cover the internal connector which connects the connecter – which is attached to the case – to 

the header, transducer and microcontroller assembly must be connected, with the wires colors 

matching on either side of the connector – there is no unidirectional connector because it is too bulky. 

Finally, the case can be tightened down onto the header and the edge can be sealed with tap to 

improve weather sealing. 

Before all this the Arduino program needs to be loaded onto the Teensy 3.5 so that it knows what to 

do when the power is switched on. The program consists of two parts which are separated by the 

background colors in Figure 28 with the blue representing the setup stage and the two grey section 

representing normal operation and debugging.  

The debugging code allows the Teensy to be accessed once it has already been installed which can 

allow for the zeroing of data, taking a sample for calibration or just to check the system is operating 

as expected, display the timer information for the system to ensure that the system is logging at the 

correct rate and a final debugging display that informs the user of how many messages are sent with 

each set of samples. 
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Figure 28 shows simple graphical representations of the Arduino program which runs on the microprocessor. 

Table 6 shows the variables that might be changed in the Arduino program to adjust the program to match 

different system setups. 

Variable Description 

N_TAPS Sets the number of taps to read and write to the 

CAN bus. 

RATE The rate is in Hz and sets the write rate so how 

often the CAN message is sent. 

SAMPLES Samples defines how many times to read each 

tap for a sample. The equation below should be 

used to get a maximum rate for the cleanest 

data. 

Samples = 34,752/(RATE*N_TAPS) 

bd Is the baud rate of the CAN bus so for 1Mb/s use 

1000000. 

tx, rx Set which pins the CAN adapter is plugged into 

and should usually be set to 1 for both. 

Each CAN message is 64 bits (or 8 bytes) which is enough to carry the pressure value for 4 taps which 

are stored as the pressure in Pascals with a default offset of 2000 added. This is done because M1 
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Build would not read in signed integers properly so 2000 was added to the pressure value in Arduino 

then 2000 was subtracted in M1 Build. To transmit 24 values this meant that 4 messages had to be 

used to transmit all the 24 transducers values. 

 

Figure 29 shows the breakdown of a CAN message sent by the microcontroller to the CAN bus. 

Once the pressure tapping box is completed the MoTeC data logger needs to be told how to read and 

log the data sent over the CAN bus by the pressure array. This programming is done in M1 Build which 

is MoTeCs software for programming their ECUs and data loggers. Appendix 9.8 contains all the setup 

information for M1 Build to get the system to work. In short there are 24 channels which are updated 

by a scheduled function which just reads the CAN messages then saves them to the channel. All of 

these elements are contained within a group for neatness and organization but which also contributes 

the variables names. To get the data logger to store the values M1 Tune must be used to add the 

Pressure Array variables to the logged data. 

 

Figure 30 shows the completed pressure array ready to be installed on the vehicle. 

Once completed the box shown in Figure 30 can be plugged into any port on the car and will 

automatically be logged. This allows the system to be used in a wide range of situations to test any 

aerodynamic component on the vehicle. Some data was collected to prove the system worked before 

the completion of this report however a lack of time has prevented any valuable data from being 

extracted. Figure 31 shows some values plotted in MoTeC as an overlay of the track to help add 

context to the location of the pressure values. 
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Figure 31 shows the coefficient of pressure value for one of the transducers over a lap of a short 150m track 

involving a 10m slalom (top) and two 20m radius corners. 

This last paragraph will add some recommendations for the future of the pressure array so that it can 

be developed and become an even more usable tool for the team when designing with aerodynamics. 

The current system involves a lot of soldered wires which are prone to failure from fatigue so one of 

the suggestions is to remove all the wire connections and replace them with PCBs and connectors to 

improve reliability. The weather sealing of the current box is highly questionable so it would also be 

suggested that the box be either checked or redesigned to be water tight. 

6. CONCLUSIONS

In this project an aero map was successfully produces using Fluent as a fluid simulation package with 

assistance from the MonARCH cluster and a python script for batch job submission and results 

processing. This process was coupled with a variety of analysis tools in both MATLAB and MoTeC i2 

Pro which allowed for the maximum value to be extracted from the aero map during the design phase 

of development and during the tuning and setup phase of development. 

Wind tunnel data was also collected to help validate the simulated values and to gain an 

understanding of where the simulation was predicting the flow well and where it was failing to predict 

the flow. A system for collecting on-track data to overcome the wind tunnels limitation on producing 

results for the vehicle at different attitudes but also to help develop and understand the aero map 

during real world driving. 
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9. APPENDICES

9.1 Python Scripts defining Sweep Class
import os 
import shutil 
from pickle import dump, load 
from itertools import count 

name_format = '{baseline:02d}.{set:02d}.{run:02d}' 

attitude_string = '''; Define attitude variables 
(define frh {frh}) ; Front Ride Height 
(define rrh {rrh}) ; Rear Ride Height 
(define roll {roll}) ; Roll Angle 
(define steer {steer}) ; Steer Angle 
(define yaw {yaw}) ; Yaw Angle 
; Define Vehicle Parameters 
(define wb {wb}) ; Wheel Base 
(define tw {tw}) ; Track Width 
(define rh {rh}) ; Base Ride Height 
(define rch {rch}) ; Roll Center Height''' 

class sweep: 
    def __init__(self, base, attitude = attitude_string, baselineval = 0, setval = 0): 

 self.base = base.copy() 
 self.baseline = baselineval 
 self.set = setval 
 self.cases = [] 
 self.cases.append(base.copy()) 
 self.result = {} 
 pass 

    def add(self, **kwargs): 
 case = self.base.copy() 
 bool_base = False 

 for key, value in kwargs.items(): 
 case[key] = value 
 if self.base[key] is not value: 
   bool_base = True 

 pass 

 if bool_base: 
  self.cases.append(case) 

https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-coupling-momentum-and-continuity.pdf
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/aa-v2-i2-coupling-momentum-and-continuity.pdf
https://www.linkedin.com/pulse/better-meshing-using-ansys-fluent-hashan-mendis/?published=t
https://www.linkedin.com/pulse/better-meshing-using-ansys-fluent-hashan-mendis/?published=t
https://pdfs.semanticscholar.org/b209/aceb802f67e862bd49dc4f1b2748a7ff9a17.pdf
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            pass 
        return case 
 
    def get(self, n): 
        return cases[n] 
     
    def get_attitude(self, n): 
        case = self.cases[n] 
        return attitude_string.format(**case) 
 
    def save(self, filename = 'sweep.data'): 
        with open(filename, 'wb') as filehandle: 
            dump(self.cases, filehandle) 
        pass 
     
    def load(self, filename = 'sweep.data'): 
        with open(filename, 'rb') as filehandle: 
            self.cases = load(filehandle) 
        pass 
 
    def setup(self, save = True, start = True): 
         
        home = os.getcwd() 
 
        if save: 
            self.save() 
            pass 
 
        for i, case in enumerate(self.cases): 
            name =  name_format.format(baseline = self.baseline, set = self.set, run = i) 
 
            os.mkdir(name) 
            shutil.copy('sweep.sh', '{}/sweep.sh'.format(name)) 
             
            os.chdir(name) 
 
            with open('attitude.jou', 'w+') as file: 
                file.write(attitude_string.format(**case)) 
                pass 
 
            if start: 
                os.system('sbatch sweep.sh') 
                pass 
             
            os.chdir(home) 
            pass 
        pass 
 
    def collect(self, save = True, load = True): 
        home = os.getcwd() 
 
        if load: 
            self.load() 
            pass 
 
        for i, case in enumerate(self.cases): 
            name =  name_format.format(baseline = self.baseline, set = self.set, run = i) 
            data = {} 
 
            os.chdir(name) 
            os.chdir('out') 
 
            keys = ['force', 'moment'] 
            dims = ['x', 'y', 'z'] 
            for key in keys: 
                with open('{}.txt'.format(key)) as filehandle: 
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                    lines = filehandle.readlines() 
                    pass 
                for line in lines: 
                    if line[0:3] == 'Net': 
                        total = line 
                        break 
                    pass 
 
                n = 0 
                strValue = '' 
                values = [] 
                for char in total: 
                    if n > 5: 
                        nn = 0 
                        if char == ')': 
                            values.append(float(strValue)) 
                            break 
                        elif char == ' ': 
                            values.append(float(strValue)) 
                            strValue = '' 
                            pass 
                        else: 
                            strValue = strValue + char 
                            pass 
                        pass 
                    elif char == '(': 
                        n = n + 1 
                    pass 
 
                 
                for dim, value in zip(dims, values): 
                    valName = '{key}.{dim}'.format(key = key, dim = dim) 
                    self.cases[i][valName] = value 
                    pass 
                pass 
             
            os.chdir(home) 
            pass 
         
        if save: 
            self.save() 
            pass 
 
    def export(self, filename = 'map.csv'): 
        lines = [] 
        line = '' 
        keys = [] 
        for key, value in self.cases[0].items(): 
            line = line + key + ',' 
            keys.append(key) 
            pass 
 
        line = line[:-1] + '\n' 
        lines.append(line) 
 
        for case in self.cases: 
            line = '' 
 
            for key in keys: 
                line = line +  str(case[key]) + ',' 
                pass 
 
            line = line[:-1] + '\n' 
            lines.append(line) 
            pass 
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        with open(filename, 'w+') as file: 
            file.writelines(lines) 
            pass 
        pass 
    pass 

9.2 Python Script defining Map Setup 
from sweepClass import sweep 
 
# Define sweep values 
rhs = [15, 25, 35, 45, 55, 65] 
rolls = [0, 1, 2] 
yaws = [0, 4, 8, 12, 16] 
steers = [0, 6, 12, 18, 24] 
 
# Define baseline attitude 
base = {'frh' : 35, 
        'rrh' : 35, 
        'roll' : 1, 
        'steer' : 8, 
        'yaw' : 4, 
        'wb' : 1550, 
        'tw' : 1200, 
        'rh' : 40, 
        'rch' : 30} 
 
# Create sweep object 
swp = sweep(base) 
 
# Add the ride height map 
for frh in rhs: 
    for rrh in rhs: 
        swp.add(frh = frh, rrh = rrh) 
        pass 
    pass 
 
# Add the roll sweep 
for roll in rolls: 
    swp.add(roll = roll) 
    pass 
 
# Add the steer sweep 
for steer in steers: 
    swp.add(steer = steer) 
    pass 
 
# Add the yaw sweep  
for yaw in yaws: 
    swp.add(yaw = yaw) 
    pass 
 
# Start the simulations 
swp.setup() 

9.3 Python Script defining Data Collection  
from sweepClass import sweep 
 
swp = sweep({}) 
swp.collect(load = True, save = True) 
swp.export('map.csv') 

9.4 Shell Script for Simulations 
#!/bin/env bash 
#SBATCH --job-name=mms-cfd-aeromap 
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#SBATCH --time=12:00:00 
#SBATCH --partition=comp,short 
#SBATCH --mem=98000 
#SBATCH --ntasks=16 
#SBATCH --ntasks-per-node=16 
#SBATCH --cpus-per-task=1 
 
module load ansys/19.1 
 
master='/mnt/lustre/projects/eh14/sweep/master' 
origin=`pwd` 
 
mkdir out 
 
cp $master/* $origin/ 
fluent 3d -g -meshing -t${SLURM_NTASKS} -i run.jou 
 
cd $origin 
cp slurm* solution* attitude* *.txt $origin/out/ 
rm * 

9.5 Aerodynamic Map MATLAB FUNCTION 
function [ force, moment ] = function_map( map, attitudes, velocities ) 
%FUNCTION_MAP This function takes a map, an attitude (or list of attitudes)  
%and velocity (or list of velocities) and returns the forces and moments at 
%those attitudes and velocities note that the dimensions of attitudes and 
%velocities must be factors of each other. 
  
% Assume that if no velcity is provided the users is after coefficients 
if nargin == 1 
    attitudes = map.attitude; 
    dynamic_pressure = 1; 
elseif nargin == 2 
    dynamic_pressure = 1; 
else 
    dynamic_pressure = 0.5*1.225*velocities.^2; 
end 
  
  
% Create matricies for frh and rrh 
[frh,rrh] = meshgrid(map.rhs.frh, map.rhs.rrh); 
  
% Get the size of the inputs velocities and attitudes 
szeAtt = size(attitudes); 
szeDyn = size(dynamic_pressure); 
  
% Create empty matricies 
force_rhs = NaN(szeAtt(1), 3); 
moment_rhs = NaN(szeAtt(1), 3); 
  
% Sweep through the dimensions for the 2d interpolation tool 
% Get the front and rear ride height forces 
for a = 1:3 
    force_rhs(:,a) = interp2(frh, rrh, map.rhs.force(:,:,a), attitudes(:, 1), attitudes(:, 
2)); 
    moment_rhs(:,a) = interp2(frh, rrh, map.rhs.moment(:,:,a), attitudes(:, 1), attitudes(:, 
2)); 
end 
  
% Get the roll forces 
force_roll = interp1(map.roll.roll, map.roll.force, attitudes(:, 3)); 
moment_roll = interp1(map.roll.roll, map.roll.moment, attitudes(:, 3)); 
  
% Get the steer forces 
force_steer = interp1(map.steer.steer, map.steer.force, attitudes(:, 4)); 
moment_steer = interp1(map.steer.steer, map.steer.moment, attitudes(:, 4)); 
  
% Get the yaw forces 
force_yaw = interp1(map.yaw.yaw, map.yaw.force, attitudes(:, 5)); 
moment_yaw = interp1(map.yaw.yaw, map.yaw.moment, attitudes(:, 5)); 
  
% Sum the forces 
force = (force_rhs + force_roll + force_steer + force_yaw - repmat(3 * map.bsl.force, 
[szeAtt(1), 1])); 
moment = (moment_rhs + moment_roll + moment_steer + moment_yaw -  repmat(3 * map.bsl.moment, 
[szeAtt(1), 1])); 
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% Scale the matricies so that their dimensions will agree 
% If there are more attitudes than velocities 
if szeAtt(1) >= szeDyn(1) 
    % Repeat the number of velocities required 
    dynamic_pressure = repmat(dynamic_pressure, [szeAtt(1)/szeDyn(1), 3]); 
else 
    % Otherwise scale the attitudes we also need a velocity for each dim 
    dynamic_pressure = repmat(dynamic_pressure, [1, 3]); 
    force = repmat(force, [szeDyn(1)/szeAtt(1), 1]); 
    moment = repmat(moment, [szeDyn(1)/szeAtt(1), 1]); 
end 
  
% Generate the output forces 
force = force .* dynamic_pressure; 
moment = moment .* dynamic_pressure; 
end 

9.6 Script to batch process figures from the aero map 
init() 
  
%% Read in the map data 
load('Outputs/map.mat') 
  
% This is the only line you need to change !!! 
params = {map.roll, map.steer, map.yaw}; % Works with roll, steer, yaw 
  
%% Loop 
for a = 1:3 
    param = params{a}; 
     
    %% Generate the calculated outputs 
    cr = param.moment(:,2)./-1.535; 
    cf = param.force(:,3)-cr; 
    bal = cf./param.force(:,3) * 100; 
    szeParam = size(param.force); 
    bsl_force = repmat(map.bsl.force, [szeParam(1),1]); 
    loss = (param.force - bsl_force)./bsl_force * 100; 
  
    %% Get Parameter Names 
    name = param.name; 
  
    %% Generate Plots 
    fig = initParams(); 
    plot(param.values, param.force(:, 3), 'rs:', 'MarkerSize',10, 'LineWidth',2) 
    title(sprintf('%s Sensitivity Sweep of Lift', name.short)) 
    xlabel(sprintf('%s (%s)', name.long, name.units)) 
    ylabel('C_Z.A') 
    saveas(fig,sprintf('Outputs/Figures/%s_Lift_sens.bmp', name.short)); 
  
    fig = initNewFigure(); 
    plot(param.values, param.force(:, 1), 'rs:', 'MarkerSize',10, 'LineWidth',2) 
    title(sprintf('%s Sensitivity Sweep of Drag', name.short)) 
    xlabel(sprintf('%s (%s)', name.long, name.units)) 
    ylabel('C_X.A') 
    saveas(fig,sprintf('Outputs/Figures/%s_Drag_sens.bmp', name.short)); 
  
    fig = initNewFigure(); 
    plot(param.values, bal, 'rs:', 'MarkerSize',10, 'LineWidth',2) 
    title(sprintf('%s Sensitivity Sweep of Balance', name.short)) 
    xlabel(sprintf('%s (%s)', name.long, name.units)) 
    ylabel('Balance (%)') 
    saveas(fig,sprintf('Outputs/Figures/%s_Balance_sens.bmp', name.short)); 
  
  
    fig = initNewFigure(); 
    plot(param.values, loss(:, 3), 'rs:', 'MarkerSize',10, 'LineWidth',2) 
    title(sprintf('%s Sensitivity Sweep of Lift', name.short)) 
    xlabel(sprintf('%s (%s)', name.long, name.units)) 
    ylabel('% Loss to straightline') 
    saveas(fig,sprintf('Outputs/Figures/%s_Lift_sens_percent.bmp', name.short)); 
end  

9.7 Arduino Code for Pressure Array 
#define N_TAPS 4 
#define MAX_TAPS 24 
#define MSG_SZE 8 
#define BYTE_SZE 8 
#define READ_SZE 2 
#define RATE 10 
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#define BASE_ADDRESS 0 
#define ZERO_SAMPLES 1000 
// Maximum rate is RATE * SAMPLES * N_TAPS < 34 752 
#define SAMPLES 860 
 
#include <EEPROM.h> 
#include <FlexCAN.h> 
 
// CAN Setup 
// Create the message and the message mask 
CAN_message_t msg; 
CAN_filter_t defaultMask;  
 
// Set the baud rate 
uint32_t bd = 1000000; 
 
// Set the Teensy Pins 
uint8_t tx = 1; // 0 is 3, 1 is 29 
uint8_t rx = 1; // 0 is 4, 1 is 30 
 
// Set the CAN BUS id 
uint16_t id = 0x600; 
 
// Create the variables which hold the number of CAN messages and the number of taps per message 
uint16_t n_msg = 0; 
uint16_t n_taps = 0; 
 
// General Setup 
// Create the timer and the timing interval 
uint64_t t = 0; 
uint64_t t_i = 1000000/RATE; 
 
// Performance timers 
uint64_t t_sample; 
uint64_t t_all; 
 
// Create the led variable for flashing led during operation 
int led = HIGH; 
 
// Create an array to hold the pressure values 
double data[MAX_TAPS]; 
 
// Set which ADC pin refers to which port 
uint8_t adc_pins[] = {A0, A1, A2, 
                      A3, A4, A5, 
                      A6, A7, A8, 
                      A9, A10, A11, 
                      A12, A13, A14, 
                      A15, A16, A17, 
                      A18, A19, A20, 
                      A21, A22, A23}; 
 
// Create arrays for the calibration values 
double intercepts[MAX_TAPS]; 
double slopes[MAX_TAPS]; 
 
// Set the EEPROM memory locations 
unsigned int int_address = BASE_ADDRESS; 
unsigned int slp_address = BASE_ADDRESS + MAX_TAPS; 
 
void setup() { 
 
  // Set the led pin and switch it off 
  pinMode(13, OUTPUT); 
  digitalWrite(13, LOW); 
 
  // Set the CAN adapter to on  
  pinMode(28, OUTPUT); 
  digitalWrite(28, LOW); 
 
  // Start the Serial bus for debugging, zeroing and calibrating 
  Serial.begin(9600); 
 
  // Set the default mask values 
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  defaultMask.flags.remote = 0; 
  defaultMask.flags.extended = 0; 
  defaultMask.id = 0; 
 
  // Setup the CAN message with the data length and switch of extended id 
  msg.len = 8; 
  msg.ext = 0; 
 
  // Start the CAN BUS 
  Can0.begin(bd, defaultMask, tx, rx); 
 
  // Read the calibration arrays from the memory 
  EEPROM.get(int_address, intercepts); 
  EEPROM.get(slp_address, slopes); 
 
  // Set the slope calibration values (should be removed in next version) 
  for (unsigned int i = 0; i < N_TAPS; i++) 
  { 
    slopes[i] = 0.050354; 
  } 
 
  // Set the analogue read resolution 
  analogReadResolution(READ_SZE * BYTE_SZE); 
 
  // Determine the number of taps in a CAN message 
  n_taps = 64 / READ_SZE / BYTE_SZE; 
  // Determine the number of CAN messages required for all the taps 
  n_msg = N_TAPS / n_taps; 
 
  // Set the first write time 
  t = micros() + t_i; 
 
  // Turn the led on 
  digitalWrite(13, led); 
     
} 
 
void loop() 
{ 
  // When the write time is exceeded 
  if (t < micros()) 
  { 
    // Time the write process 
    t_all = micros(); 
     
    // Take a data sample 
    sample(data, intercepts, slopes, N_TAPS, SAMPLES); 
    t_sample = micros() - t_all; 
 
    // Write the samples to the CAN BUS 
    // Loop through the messages 
    for (unsigned int i = 0; i < n_msg; i++) 
    { 
      // Loop through the taps within this message 
      for (unsigned int j = 0; j < n_taps; j++) 
      { 
        // Determine the data point for this message and tap combination 
        unsigned int ii = i * n_taps + j; 
         
        // Retrieve and convert the data point 
        uint16_t value =  data[ii] + 2000; 
         
        // Split the data into two bytes 
        msg.buf[2*j+1] = lowByte(value); 
        msg.buf[2*j] = highByte(value); 
      } 
 
      // Set the message id and send it! 
      msg.id = id + i; 
      Can0.write(msg); 
    } 
     
    // Blink the led at each write 
    led_blink(); 
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    // Set the next write time 
    t += t_i; 
 
    //Time the write process 
    t_all = micros() - t_all; 
  } 
 
  // If there is a serial message this means we are debugging 
  if (Serial.available() > 0) 
  { 
    // Set the led to on 
    digitalWrite(13, led); 
     
    // Read the command which is a sing/e character 
    char cmd = Serial.read(); 
 
    // Determine task based on command 
    switch (cmd) 
    { 
      // Zero command (z) 
      case 'z': 
        // Determine the intercepts to zero the data 
        zero(intercepts, N_TAPS, ZERO_SAMPLES); 
        // Save the intecepts to the EEPROM memory 
        EEPROM.put(int_address, intercepts); 
        // Don't break and take a sample as well 
 
      // Sample command (s) 
      case 's': 
        // Take a sample 
        sample(data, intercepts, slopes, N_TAPS, ZERO_SAMPLES); 
 
        // Print it to the Serial Bus 
        for (uint16_t i = 0; i < N_TAPS; i++) 
        { 
          uint16_t value = data[i] + 2000; 
            Serial.print(value); 
            if (i < N_TAPS - 1) 
            { 
              Serial.print(','); 
            } 
        } 
     
        Serial.println(); 
        break; 
 
      // If debugging timer (t) 
      case 't': 
        Serial.print("Rquired time(ms) : "); 
        Serial.println(int(t_i)); 
        Serial.print("Total time(ms) : "); 
        Serial.println(int(t_all)); 
        Serial.print("Sample time(ms) : "); 
        Serial.println(int(t_sample)); 
        break; 
 
      // Message debugging (d) 
      case 'd': 
        Serial.print("Number of messages : "); 
        Serial.println(n_msg); 
        Serial.print("Number of taps per : "); 
        Serial.println(n_taps); 
        break; 
         
      // Return and error (e) if the command is not recognised 
      default: 
        Serial.println('e'); 
    } 
 
    // Clear the serial memory 
    while (Serial.available() > 0) 
    { 
      Serial.read(); 
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    } 
 
    // Return to normal operation 
    // Set the led back to blinking position 
    digitalWrite(13, led); 
     
    // Set the first write time 
    t = micros() + t_i; 
  } 
} 
 
/************ FUNCTIONS ************/ 
void led_blink() 
{ 
  if (led == HIGH) 
    led = LOW; 
  else 
    led = HIGH; 
     
  digitalWrite(13, led); 
} 
 
void zero(double *intercepts, unsigned int n_taps, unsigned int samples) 
{ 
  for (unsigned int i = 0; i < N_TAPS; i++) 
  { 
    intercepts[i] = 0; 
  } 
     
  for (unsigned int s = 0; s < samples; s++) 
  { 
    for (uint16_t i = 0; i < N_TAPS; i++) 
    { 
      uint8_t pin = adc_pins[i]; 
      intercepts[i] += double(analogRead(pin)) / samples; 
    } 
  } 
} 
 
void sample(double *data, double *intercepts, double *slopes, unsigned int n_taps, unsigned int samples) 
{ 
  for (unsigned int i = 0; i < N_TAPS; i++) 
    { 
      data[i] = 0; 
    } 
     
  for (unsigned int s = 0; s < samples; s++) 
  {  
    for (unsigned int i = 0; i < N_TAPS; i++) 
    { 
      uint8_t pin = adc_pins[i]; 
      data[i] += ((double(analogRead(pin)) - intercepts[i]) * slopes[i]) / samples; 
    } 
  } 
} 

9.8 M1 Build Setup for Pressure Array 
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Figure 32 Shows the MoTec M1 Build and Tune parameters. 

local PresTapCAN0 = CanComms.RxOpenStandard(0, 0x700, 0x0, true);  
local PresTapCAN1 = CanComms.RxOpenStandard(1, 0x700, 0x0, true);  
if(CanComms.RxMessage(PresTapCAN0)) 
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{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 0 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 1 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 2 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 3 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 0 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 1 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 2 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 3 = value - 2000.0; 
} 
 
PresTapCAN0 = CanComms.RxOpenStandard(0, 0x701, 0x0, true); 
PresTapCAN1 = CanComms.RxOpenStandard(1, 0x701, 0x0, true);   
if(CanComms.RxMessage(PresTapCAN0)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 4 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 5 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 6 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 7 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 4 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 5 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 6 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 7 = value - 2000.0; 
} 
 
PresTapCAN0 = CanComms.RxOpenStandard(0, 0x702, 0x0, true);   
PresTapCAN1 = CanComms.RxOpenStandard(1, 0x702, 0x0, true);   
if(CanComms.RxMessage(PresTapCAN0)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 8 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 9 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 10 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 11 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 8 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 9 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 10 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 11 = value - 2000.0; 
} 
 
PresTapCAN0 = CanComms.RxOpenStandard(0, 0x703, 0x0, true);  
PresTapCAN1 = CanComms.RxOpenStandard(1, 0x703, 0x0, true);  
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if(CanComms.RxMessage(PresTapCAN0)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 12 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 13 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 14 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 15 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 12 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 13 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 14 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 15 = value - 2000.0; 
} 
 
PresTapCAN0 = CanComms.RxOpenStandard(0, 0x704, 0x0, true);  
PresTapCAN1 = CanComms.RxOpenStandard(1, 0x704, 0x0, true);  
if(CanComms.RxMessage(PresTapCAN0)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 16 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 17 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 18 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 19 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 16 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 17 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 18 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 19 = value - 2000.0; 
} 
 
PresTapCAN0 = CanComms.RxOpenStandard(0, 0x705, 0x0, true); 
PresTapCAN1 = CanComms.RxOpenStandard(1, 0x705, 0x0, true); 
if(CanComms.RxMessage(PresTapCAN0)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN0, 0, 16); 
 Tap 20 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 16, 16); 
 Tap 21 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 32, 16); 
 Tap 22 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN0, 48, 16); 
 Tap 23 = value - 2000.0; 
} 
else if(CanComms.RxMessage(PresTapCAN1)) 
{ 
 local value = CanComms.GetUnsignedInteger(PresTapCAN1, 0, 16); 
 Tap 20 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 16, 16); 
 Tap 21 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 32, 16); 
 Tap 22 = value - 2000.0; 
 value = CanComms.GetUnsignedInteger(PresTapCAN1, 48, 16); 
 Tap 23 = value - 2000.0; 
} 
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