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Significant Contributions

In pursuit of this project the author:

• Chose the computing hardware that will be used for the autonomous system. This hard-
ware was purchased, assembled and configured, ready for other subsystems to utilize.

• Investigated various autonomous software architectures, and eventually chose Robot Op-
erating System (ROS). From this, in consultation with the other subsystem designers,
the author defined the autonomous system architecture. This includes the processing
split (what algorithms run in what node, on what machine), as well as the data flow and
message structures between the nodes.

• Created a ’Dashboard’ utilizing technologies such as MQTT and NodeJS, which enables
easy monitoring of the autonomous computers from a web-based application.

• Designed a system for monitoring the health of each processing node using heartbeats,
which ensures the system quickly fails into a safe state every time a fatal error occurs.

• Developed the ROS ’master’ library to facilitate global state control, and easy integration
of processing nodes into the autonomous system.

• Developed a robust custom message protocol for use over UART, which facilitates dynamic
payload sizes and message integrity checks.

• Programmed a low-level micro-controller (PSoC 5LP) to implement UART communica-
tion using the aforementioned message protocol. Also implemented digital and analogue
input and output logic, as well as laid the foundation for the autonomous state-machine
(as defined by competition rules).

• Designed a PCB circuit for the PSoC 5LP, which protects the input/output pins, enables
CAN bus communication, and interfaces with the EBS interlock circuitry(which was
designed by another subsystem).

• Collaborated in discussions with the ’LV’ subsection on how to cool the computing units
once on the vehicle, and from this, performed thermal finite-element-analysis to validate
the proposed cooling solution.

• Provided assistance to the other subsystem designers, and created ROS utility packages
to facilitate processing and saving of data.
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The future is autonomous, and Monash Motorsport

is taking great strides towards realizing this future.

Development of an autonomous racing vehicle is

underway and scheduled to be completed mid 2019.

It must be capable of perceiving various cone-marked

tracks and completing laps as quickly as possible.

This project focuses on the computational platform

which the other subsystems use, as well as how the

system integrates with the existing electric vehicle.

By leveraging the power of parallel processing

using CUDA, OpenCL and multi-threading, the

entire autonomous system is theoretically

capable of processing over 1.5 trillion 32-bit

floating-point numbers every second.

The platform uses Robot Operating System,

which is a flexible, open-source framework for

writing robotic software. It helps integrate

computing clusters, and enables easy

communication between multiple processing

‘nodes’ in the system.

The 2017/2018 Electric Vehicle, M17-E

Hardware Overview

ROS Node Processing Overview

The autonomous system currently runs on 3

computing units: An Intel i7 8700 CPU, an NVIDIA

Jetson TX2, and a PSoC 5LP. The ‘i7’ is best for

sequential processing, whilst the ‘Jetson’ is best for

parallel processing, thanks to its 256 CUDA-enabled

cores.

The PSoC houses the autonomous state-machine,

and is used for low-level digital and analogue logic.
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Executive Summary

What follows in this report is the design process of an autonomous racing vehicle’s computa-
tional system and structure. This covers the original research performed, the concept generation
phase, and the final design decisions. It concludes with detailed documentation of the system
architecture, and various tasks that were performed in tandem.

Three processors were ultimately chosen for their speed, price and power/performance charac-
teristics. Each of these computing devices play an important role in satisfying the requirements
of an autonomous vehicle; which is to perceive and react to a fast-changing external environ-
ment.

1. An Intel i7, 8700 Processor

2. An NVIDIA Jetson TX2

3. A PSoC 5LP - Mounted on a custom PCB board

Robot Operating System is used as the backbone of the autonomous environment to integrate
all the computing processes together into a single unified system. All R.O.S. processing nodes
are required to implement a state-machine, and are controlled by one ’master’ node which is
the main controlling unit of the autonomous computing system.

A custom message protocol is defined, which allows for robust communication over a serial hard-
ware layer using UART. This system allows for multi-byte payloads, and facilitates verification
of received message structures through the use of two cyclic-redundancy-checks.

The system is designed with safety in mind, and utilizes a chain of heartbeats to ensure that
all processing nodes are alive and functioning correctly. The last line of defence is built using
non-programmable physical logic gates which are unable to fail due to poor programming.

This computing system shall be used in 2019 as the foundation for Monash Motorsport’s first
autonomous vehicle, M19-D.
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Chapter 1

Introduction

1.1 Motivation

In the year 2000, Scott Wordley and a group of friends built Monash’s first Formula SAE
vehicle. This laid the foundation for Monash Motorsport, a student-led team based at Monash
University Clayton, which is still operating to this day. Every year Monash Motorsport partakes
in global competitions, based both in Australia and Europe, and strive to achieve a place on
the podium. To accommodate the new changes occurring in the automotive industry, new
classes of vehicles have been introduced over the years. In 2016, electric vehicles were allowed
to compete at competition, side by side with the classic high-performance combustion cars that
had sustained the competition for over 20 years. Exactly one year later in 2017, another class of
vehicles were introduced into the F-SAE family: driverless. Due to significant and fundamental
differences compared to the previous classes, these vehicles required a large set of new rules
and regulations, as well as a modified set of events to compete in. In 2017 Monash Motorsport
investigated the feasibility of developing their own autonomous vehicle. After a year of research,
the decision was made to pursue the development and manufacture of a driverless vehicle, to
potentially and hopefully compete in the 2020 Formula Student Germany competition, amongst
others.

1.2 The Competition

The original competition involves 4 dynamic events:

• Skidpad – A figure-eight track. The vehicle must complete 2 laps of each side.

• Acceleration – A straight track with a length of 75 meters.

• Autocross – A short (less than 1.5km) but difficult track, to test the handling of the
vehicle

• Endurance – A long track, approximately 22km in total length

For the driverless competition, the ‘endurance’ event is swapped for the ‘track-drive’ event.
This event uses the same track as the autocross event, however the vehicle only needs to drive
up to 10 laps, of a 200-500m track. This means that the maximum distance the vehicle needs
to drive is 5km, compared to the 22km for endurance. Competitions are held all over the world,
and include countries such as the USA, Germany, the UK, Austria and Australia. Different
competitions have slightly different sets of rules, however ultimately the same 4 dynamic events
still occur.
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Figure 1.1: Skidpad Track Layout

The competition in Europe is slightly more competitive compared to the Australian competi-
tion. With high-performing teams such as AMZ and KA-Racing consistently out-performing
almost all other teams. In Australia, the driverless vehicle category has still not been inte-
grated into the competition, however there are high hopes that this will occur soon. For all
driverless events, the track is laid out with 4 types of cones. Blue and yellow cones define the
left and right sides of the track respectively, whilst orange cones define the start and finish
boundaries. These cones are guaranteed to be a specific shape, size and colour, which means
that the algorithms being developed require significantly less processing power compared to a
full autonomous vehicle.

1.3 The Team

The team in 2018 consisted of over 100 students across multiple engineering and non-engineering
disciplines. The team fully handles its own finances, management and manufacturing of the
vehicle. Oversight from academic supervisors help guide the direction of the team and the
engineering choices made, however ultimately the design and direction of Monash Motorsport
is at the discretion of the leadership team. The team is split into multiple sections, these include
aerodynamics, powertrain, suspension, chassis, business and autonomous systems. With the
development of the electric vehicle in 2017, powertrain was split into two sections, one for
combustion and one for the electric powertrain. At the beginning of 2018 the autonomous
section was created to handle the development of the new driverless vehicle. This section
consisted of 6 students undertaking their Final-Year-Projects, and another 12 students with
various roles in the subsection.

1.4 Project Objectives

At the beginning of 2018, the autonomous management team decided upon a single goal:

To build an autonomous vehicle capable of completing all competition events in 2019.

This goal underpins everything that the autonomous subsection has done and shall continue
to do into the future. Whilst some teams choose to optimise their vehicles for specific events,
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Monash Motorsport aims to be the most respected FSAE team in the world, and performing well
in just one event is not enough to achieve this goal. At the beginning of 2018, the autonomous
team was split into subsections, these include

• LV Systems

• Cameras

• LiDAR

• GPS / INS

• Computing

• Path Planning

• Vehicle Actuation

• Software Infrastructure

Specifically, in the case of computing, the following requirements were generated at the begin-
ning of the year:

• Provide a unified platform for other subsystems to use for processing.

• Provide a method to share information between multiple subsystems

• Interface with the existing ECU, or, implement the functionality of the existing ECU

• Be able to process images and feed-forward pre-trained neural networks

• Implement a state-machine to keep track of the vehicle status

From these requirements, and the requirements determined by the other subsystem designers,
the following simple performance targets were chosen:

Metric Target Notes
Image Processing Rate At least 12 FPS Of 1080p images
Computational Power More than 1 TFLOP 32-bit floating point
Message Latency Less than 100ms Between any two points of the system

The image processing rate was chosen based on the maximum speed of the vehicle and the
spacing of cones as specified in the rules. The computational power requirement was rather
arbitrary; however, it was based on empirical evidence from FSAE teams who competed and
were successful in previous competitions. To satisfy these requirements, a combination of
hardware and software was chosen, purchased, assembled and tested. These components are
explored in-depth throughout the rest of this report.
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Chapter 2

Background

2.1 Existing Work

To ensure the entire autonomous system is developed, built and tested within a reasonable
time-frame, it was decided to re-use the 2018 electric vehicle, rather than build a new one
from scratch. This will require a minimal amount of modifications to the chassis and low-
voltage loom in order to accommodate the new sensors and computing units, and avoids the
hassle of building an entire electric-vehicle from the ’ground up’. In 2017, a member of Monash
Motorsport conducted research into the feasibility of building an autonomous vehicle to compete
at competition in 2019. Off the back of this research the new autonomous division was recruited,
and work began immediately in January of 2018.

2.2 Literature Review

A large body of work has been undertaken in the area of autonomous vehicles. Whilst the
low-level details of each implementation can differ quite significantly, there still exists a set
of core components which constitute an autonomous vehicle. These can be broadly defined
as perception, decision and control, and vehicle platform manipulation [1]. Perception relates
to the sensing of the world, and creating understanding from the data measured from various
sensors. Decision and control involves determining the actions that should be taken, based on
this understanding of the world. Finally, vehicle platform manipulation involves using these
decisions, usually in the form of a desired motion, and actuating the various actuators to achieve
this result.

Whilst this broad overview is helpful in segmenting the different components of an autonomous
system, it avoids the question of ”How do we link these components together?”, and ”Where
do these components exist and operate?”.

Hardware implementations of this high-level overview take many forms, and depend heavily
on the resources available to the engineering team and the purpose behind the autonomous
vehicle. For small F-SAE racing teams like Monash Motorsport, success has been seen with
low-powered computing units such as a Raspberry Pi or a laptop[2]. This appears to work
well due to the reduced complexity of the problem at hand, which only requires localization
within a small track, with clear and well-defined boundaries. More complex problems, such
as level 5 autonomous driving, require significantly more processing power as the system must
perceive a large number of object types, and is required to perform complex path planning to
ensure the maximum amount of reliability and safety in a busy and messy environment. For
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these problems, high-compute installations are used, which can use in excess of 3000 Watts
of electrical energy, and provide over 60 tera-FLOPS (60 × 1012) of computational processing
power[3].

Software implementations also vary wildly from project to project. The architecture is usually
the same as described above, however the broad components are split into more specific sub-
components, e.g. Sensor Processing, Localization and Mapping, Path Planning and Vehicle
Actuation. These can be focused on in isolation, and helps to simplify the overwhelming task
of creating an autonomous vehicle. However, eventually these components must be combined
into a single entity, and there is a need for a system to enable these components to communicate
easily and effectively. A highly common approach is to utilize Robot Operating System (ROS),
which is a flexible, open-source framework for writing robotic software[4][5].

2.3 Previous Teams

Whilst the driverless competition is still relatively new, there’s already some outstanding work
being performed by teams all over the world. One team stands out specifically: Academic
Motorsports Zurich (AMZ). This team has competed at Formula Student Germany (FSG)
twice with their driverless vehicle, and won both competitions. In order to aide other teams
developing their own vehicle, they’ve kindly provided various sets of algorithms, white-papers
and datasets which have helped shape and direct the Monash Motorsport autonomous section.
A ROS bag containing various sensors was vital in the development of algorithms for other
subsystems such as LiDAR and GPS, and a recent whitepaper also provided some useful insight
into how to structure the computing processing pipeline and cooling system.[6]

In 2017, 15 teams competed in the driverless category at the Formula Student Germany (FSG)
competition. The hardware used by these teams was quite diverse, ranging from a BeagleBone
computer, to an NVIDIA Drive PX2. Most teams failed to pass scrutineering and weren’t
allowed to drive their vehicles at competition, however, the four teams that did all saw moderate
success with their vehicles. Once again, AMZ performed the best out of all teams. They used
two computing units, one the ’robust master’, the other the ’high-performance slave’. It was
stated to only have a combined processing power of 368 giga-FLOPS. In 2017 AMZ didn’t use
any GPU computing, as they weren’t familiar with the techniques involved in parallelizing the
processing pipeline, and hence decided to only use conventional processing units.

Figure 2.1: AMZ Driverless, 2017, At FSG
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Chapter 3

Concept Generation

What follows is the thought process behind the concept that was implemented. This includes
both the hardware and software aspects of the system.

3.1 Hardware

Various pieces of hardware were originally considered.

Name Processing Power Power Consumption Price
Raspberry Pi 3 B+ ∼3.5 GFLOPS[7] 12 Watts $60
BeagleBone Black ∼4 GFLOPS 2.3 Watts $75
Jetson TX2 1.3 FP16 TFLOP 7.5 Watts $600
NVIDIA Drive PX2 20 FP16 TFLOPS 250 Watts $15,000
NVIDIA Drive Pegasus 320 INT8 TOPS 500 Watts >$15,000
NVIDIA Xavier 30 INT8 TOPS 30 Watts $2,500

Table 3.1: Potential Hardware Options

The NVIDIA Drive PX2 and NVIDIA Drive Pegasus were discarded as potential candidates
due to their high price point. The NVIDIA Drive Xavier seemed like a good option, however
it was unavailable for purchase at the time. The Raspberry Pi and BeagleBone Black were
also discarded quite early on in the concept generation process, due to their low computational
power.

Another potential option that’s not included in the above table, is to build a custom computer
from off-the-shelf components. The exact specifications of such a machine are undefined, as it
depends entirely on the amount of money available to spend. With enough funds, a custom
machine could well outperform all of the above options. On a similar note, all-in-one units were
also considered, such as the Neousys Nuvo-5095GC. These units are also customizable. The
main difference between an all-in-one and a custom-built computer is the packaging, cooling
and pricing. For example, the Nuvo-5095GC comes in a sturdy (but not waterproof) aluminium
case with heatsinks to dissipate the 150+ watts of energy it consumes. Whilst this is ideal for a
standard vehicle which has a waterproof interior and plenty of space, it’s not ideal for a space-
constrained vehicle such as M19-D, which is also exposed to the elements. This would require
extra packaging to ensure the system is waterproof, and a new cooling solution too.

Determining exact computational requirements is a difficult task, especially when the algorithms
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Figure 3.1: The Neousys NUVO-5095GC

haven’t been written yet. The camera subsystem designers stated that they wished to achieve
over 12 frames per second when processing camera data. Assuming a 640 × 480 image, at
12 FPS, with three 8-bit colour channels, this would result in 11 MOPS if each 8-bit colour
byte was processed just once. However, difficult questions arise after this point. How many
operations are required on each byte of image data? If just averaging the 3 colour channels, this
would required 1 operation. A 3 × 3 kernel, for detecting edges or blurring the image, would
require at least 18 operations per byte. A convolutional neural network could require hundreds!
This also fails to account for inefficiencies such as a cache-miss or a ’bubble’ in the processor
pipeline, which can delay processing significantly. It also depends on compiler optimizations
and the instruction set available (e.g. is the fused-multiply-add instruction being used?).

3.1.1 Jetson TX2

After some very rough calculations, it was originally decided that the Jetson TX2 was an af-
fordable, low-powered option that should in theory be able to provide the computational power
required. However, there were concerns from other team members that this would still not be
able to provide the amount of processing power required. The TX2 is theoretically capable of
processing 1.3 trillion 16-bit floating-point numbers every second. However to extract this per-
formance, CUDA code must be written to specifically take advantage of the special instruction
set, which multiplies 2 16-bit 4 × 4 matrices together, and creates one 32-bit 4 × 4 matrix[8].
If the problem at hand can’t be made to utilize this instruction, then the performance of the
TX2 decreases to 0.6 TFLOPS. Furthermore this assumes the problem can be parallelized over
the 256 CUDA cores available. If the computation is purely sequential, then the performance
decreases even further and it’s no longer beneficial to use the CUDA cores. Consequently,
using the ARM64 processor instead leads to a theoretical performance of approximately 0.06
TFLOPS.

Figure 3.2: The Jetson TX2 Module
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3.1.2 Intel i7

Due to the performance concerns with the Jetson TX2, it was decided to include another
processing unit in the autonomous system, which utilizes an Intel i7 processor. This is better
suited for workloads which can’t be parallelized on the GPU. Due to the nature of the vehicle,
it was decided to build this computer using off-the-shelf components, which allows for a smaller
form factor compared to units such as the Neousys, and enables the development of a custom
cooling solution which works best for an F-SAE vehicle.

To determine which processor was best, benchmark results of over 500 high-end CPUs were
gathered and analysed. By using benchmark scores instead of theoretical performance (FLOPS),
a more accurate comparison can be made as these numbers are not theoretical ’best-case’ sce-
narios, but actual standardized measurements of processing power.

First, the results were ordered in descending order by benchmark score. They were then
filtered to remove any processor which consumed more than 80 watts of power. Immediately
one processor stood out as the best option: an Intel i7 8700. This CPU has a 65W Thermal-
Design-Power (TDP), a passmark benchmark score of 15,240, a 3.2 GHz base frequency and a
4.6 GHz turbo boost frequency. Looking at current benchmark scores, the Intel i7 8700 is still
one of the highest performing consumer-grade processors available.

3.1.3 Computing Summary

Various other physical components are included in the autonomous computing platform. These
include RAM, SSDs and Mother/Carrier boards. These aren’t covered in detail as they’re
simple necessities which are required for the computing units to function. In summary, the
computing hardware for the autonomous system consists of the following:

• An Intel i7, 8700 CPU. Mounted on a Mini-ITX motherboard, with 8GB of RAM and a
250GB M.2 SSD.

• An NVIDIA Jetson TX2, mounted on the developer carrier board (also Mini-ITX form-
factor), with 8GB of LPDDR4 RAM, 32GB internal eMMC memory and an external
250GB SSD. Contains 256 NVIDIA Pascal CUDA cores and a 4-core ARM Cortex-A57
64-bit processor.

Note that both processing units are situated on a 170mm× 170mm mini-ITX board. This was
purposeful, as it facilitates easier mounting on the vehicle, and consumes less space than the
larger ATX-style motherboards.
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Figure 3.3: The two mini-ITX boards. Left: i7, Right: Jetson TX2

3.1.4 Low-Level Processor

On top of these two computing units, another processing device is required. The autonomous
system must interact with the vehicle. This requires CAN communication, as well as digital
and analogue inputs and outputs. Whilst the Jetson TX2 can provide some of this IO, the 3.3v
voltage levels used by the Jetson make this difficult, and it is beneficial to not have to rely on
the Jetson TX2 in case the team wishes to take another direction with the computing hardware
in the future. Thus, another processing unit is required which is capable of providing this
low-level physical communication. This piece of hardware has been chosen to be a PSoC 5LP.
While there are many options possible, the PSoC was chosen due to its versatility, and the fact
that the team already has a wealth of experience with the PSoC from previous projects.

The PSoC has features such as

• 4 Digital to Analogue Converters

• 4 Analogue to Digital Converters

• 48 Configurable Input / Output Pins

• A CAN controller

• UART Communication

• I2C Communication

• SPI Communication

• Reprogrammable Universal Digital Blocks. Allows the creation of modules such as coun-
ters from reconfigurable logic blocks.

These make it a very versatile machine which is capable of performing all the functions we
require.

3.2 Software

There exists a wide array of possibilities when it comes to software. As with any complex
system, it is necessary to split the components into smaller units of work, which can be dele-
gated to team-members and worked on in isolation. However, this introduces a new problem:
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”How are these components integrated back together to create the final product?” Ultimately
a computing system is simply a processor of data. Data enters the system in various forms,
work is performed on this data, and new data is output. This data must flow between the
aforementioned components in an efficient manner. In a distributed computing system, there
exists many different mechanisms to facilitate this, outlined in the table below:

Mechanism Description
Request-Based
Server / Client

A central process, which a set of clients connect to. All communi-
cation occurs through the ’server’, which routes messages between
the various clients. Each process can ’request’ data from another
client through the ’server’.

Publish / Subscribe A central process, which maintains an open connection to a set of
clients. Each client ’publishes’ data to ’topics’. Upon publishing
the data, it is transferred to the server, which routes the message
to any clients which are ’subscribed’ to the topic.

Single Process,
Multiple Threads

The entire system is contained within a single process. This process
starts multiple threads, which are all capable of sharing the same
memory space, allowing for fast transfer of data.

Shared Memory The system is comprised of multiple processes, which use an exter-
nal mechanism (such as memory mapped files) to share data.

Table 3.2: Common Message Transmission Methods

These all have various advantages and disadvantages. Special care must be taken when it
comes to sharing memory between processes, and if not handled correctly data corruption can
easily occur. Purposefully copying and transferring the data between separate threads using
a networking protocol solves this problem, however it now introduces latency into the system.
Also, large heaps of information such as raw images can’t be copied and transferred quickly,
and the overhead involved will consume unnecessary and unwanted amounts of processing
power.

Thankfully, these problems have already been discovered and solved, and the solution is open-
source and freely available: Robot Operating System. This is currently the industry standard
when it comes to integrating robotic components together. It’s used by research institutions
and commercial businesses such as Bosch. There’s a wide variety of support for ROS, with
yearly updates, documentation and tutorials, as well as a slew of libraries and utilities which
aid in the development and testing of robotic systems.

Robot Operating System, or ROS for short, is a meta-operating system which provides a frame
work for communication between robotic components that is independent of the hardware and
runtime context. On a basic level, ROS consists of a ’master’ process, and a set of ’nodes’ which
connect to this master process to become part of the robotic system. Each node is a separate
process, and can communicate with other nodes using a publish/subscribe model. ROS topics
are a many-to-many relationship. Any node can publish data to a topic, and any node can
’subscribe’ and receive published messages from a topic.

This architecture enables the individual components to be created in isolation by the various
subsystem designers, and easily combined in the end. It also ensures redundancy; if a single
process fails, the rest of the nodes are ’protected’ from the failure, and won’t crash too. An
external mechanism can relaunch these nodes upon failure, or take other actions if required,
such as shutting down the entire system and bringing the vehicle to a safe stop. Roslaunch,
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a command-line-interface which comes with ROS, already provides some of this functional-
ity.

ROS also has many other features which make it beneficial to use:

3.2.1 Nodelets

The standard ROS component is a ROS ’node’ This is a single process which can access the
ROS system using the provided ROS API. Each ROS node interacts with other nodes using
a network protocol such as TCP/IP or UDP. However this is not congruent with transferring
large amounts of data. It’s quite wasteful to copy large chunks of information, and transfer
them over TCP/IP, especially when this data already exists in another memory location. This
is unavoidable when transferring between two computers which don’t share memory, however it
can be solved on a single machine. ROS ’nodelets’ provide a solution to this problem. A nodelet
runs within a ROS node, and is able to communicate with other ROS ’nodelets’ by sharing
memory between the two ROS nodelets. ROS handles the intricacies of shared memory objects
which allows the developer to focus more on the higher level design of the system, rather than
worrying about shared memory-management techniques such as mutexes and semaphores.

3.2.2 Multi-language Support

ROS is able to be used across various languages. The default language is C++, which has
high performance however can be painful to continually compile and test with. ROS also
supports python out-of-the-box, and enables faster prototyping as the code does not need to
be compiled. There is also support for other languages, such as Ruby and NodeJS, however
these are no longer actively maintained. Testing that was performed toward the end of the
year showed that the NodeJS library appears to still function, however if used in the future it
should be rigorously tested before being utilized on the vehicle.

3.2.3 Services

The ’roscore’ process maintains a list of the current ROS nodes which are running. Each ROS
node is capable of advertising ’services’, which are exposed through the roscore interface. These
are basically Remote Procedure Calls (RPC), where a specific function can be called remotely
from another ROS node. Examples of service functions include setting the rate of an IMU or
setting camera parameters on-the-fly. Whilst it is possible to implement similar functionality
using the default ROS topic publish/subscribe model, it’s much easier to implement a service.
A ’service’ will return a result to the calling process, however if using standard topics, then
there must be another topic created and subscribed to in order to receive the result of the
function call.

3.2.4 Transform Frames

A common problem in robotic applications is determining where the robot is in the world,
and where all of the ’limbs’ of the robot are too. ROS comes with a module called ’tf’, which
provides a set of utilities to solve these problems. One can define three-dimensional ’frames’
and the transformations between then at given points in time. The ’tf’ module maintains a
history of these transformations, and can be queried to determine the transformation matrix
between the frames at a previous point in time.
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Chapter 4

Physical System Overview

In summary, the physical architecture of the autonomous system is as shown:

Figure 4.1: High-Level Hardware Diagram

The following sections outline the above components which constitute the autonomous vehicle,
as well as the various interactions between these components.
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4.1 Computational Hardware

As outlined earlier, the autonomous system adds three processing units to the vehicle:

• Intel i7 8700, 8GB RAM, mounted on a Mini-ITX motherboard

• NVIDIA Jetson TX2, 8GB RAM, mounted on a Mini-ITX carrier board

• PSoC 5LP[9], mounted on a custom-built PCB

The Intel i7 is the main processing unit, and contains processing nodes which control the state
of the entire autonomous vehicle. The Jetson TX2 is solely used for processing camera image
data. Due to its 256 CUDA cores it’s best suited to this task compared to the other computing
units. These two units are connected together through an Ethernet switch. This allows the
two computers to communicate easily using ROS over a TCP/IP link.

The PSoC 5LP is a different kind of processor all together. The i7 and Jetson both run
Ubuntu 16.04, and unlike these POSIX based systems which have an underlying scheduler
which shares processing time between multiple processes, the PSoC 5LP only runs a single
program/process. This fundamental difference in computing architecture makes the PSoC a
more stable processing machine, which is ideal for safety critical sections of code which must
be executed at regular intervals and must not crash. The PSoC communicates with the Intel
i7 processor using UART.

Figure 4.2: The PSoC 5LP

The existing electric vehicle already contains its own processing unit: the MoTeC M150. This
is aptly named the ’Engine Control Unit’ (ECU) and is the current brains of the electric vehicle.
It’s nowhere near powerful enough to drive the vehicle autonomously, however it already handles
various engine and vehicle related actions, such as data-logging and throttle control. Without
this device the vehicle would cease to function, and thus the autonomous system must integrate
with the ECU to implement the new functionality that the autonomous system requires. The
ECU shall communicate with the PSoC over CAN.

Figure 4.3: The MoTeC M150 Engine Control Unit
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4.2 Data Collection Hardware

There are various new sensors which are going to be integrated into the vehicle.

4.2.1 LiDAR

The LiDAR sensor is a sweeping infra-red laser which detects straight-line distances from the
sensor to points in the world. It’s low-latency high-frequency data makes it incredibly accurate.
Many commercially developed autonomous vehicles use one or more LiDARs to sense and
perceive the world around the vehicle with great success. The LiDAR communicates with the
Intel i7, through the Ethernet switch.

Figure 4.4: The VLP16 LiDAR

4.2.2 Cameras

The solution developed by the camera subsystem designers uses a stereo vision camera. Work
was done at the beginning of the year to test a dual-camera setup, however it proved difficult
synchronizing the camera shutters and aligning the cameras correctly. Eventually a Stereolabs
ZED camera was purchased, which is an all-in-one IP66 rated plug-and-play unit. This is
much easier to use and solves the difficulties associated with synchronizing image captures and
aligning two separate cameras on the vehicle. The Stereolabs ZED camera communicates with
the Jetson TX2 over USB 3.0.

Figure 4.5: The Stereolabs ZED Camera

4.2.3 GPS

GPS signals are inherently noisy and inaccurate. When driving on the road, the GPS signal
can be complemented with a map of the road to produce a more accurate estimation of the
vehicle location. However, out on track at competition with an F-SAE vehicle, this is no
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longer an option as the track isn’t well defined like a road system. Thus it was decided to
invest in a Swiftnav Piksi-Multi GNSS Module. This GPS module is capable of communicating
with a base-station, which provides centimetre-grade accuracy to the GPS measurements. The
GPS communicates with the Intel i7 over Ethernet. The Piksi-Multi does provide UART
communication methods too, however these aren’t being utilized by the autonomous system as
Ethernet is more convenient.

Figure 4.6: The Swiftnav Piksi-Multi GNSS Module

4.3 Connectivity

The two main computing units, the Intel i7 and the Jetson TX2, are connected through an Eth-
ernet switch. On each machine a static IP address is assigned, within the 192.168.0.X subnet.
For the i7, it’s been assigned 192.168.0.1, and the Jetson has been assigned 192.168.0.10. These
IP addresses have also been mapped in the /etc/hosts file, which allows the computing units
to easily reference each other as ’mms-tx2-1’ and ’m19d’ for the Jetson and the i7 respectively.
External computers can connect to the Ethernet switch, assign themselves a static IP address
such as 192.168.0.20 and then communicate with the computing system.

The PSoC communicates with the i7 using UART. A custom message structure is being used to
transmit the payloads, and is discussed later in chapter 5. The PSoC then communicates with
the vehicle using digital and analogue input/output pins, and also interfaces with the vehicle’s
CAN bus so it can communicate with the inverter for motor control, and also monitor signals
from other sensors already on the car.

4.4 PSoC PCB

The PSoC 5LP requires various pieces of supporting hardware to enable it to interact with the
vehicle and its systems. A Printed Circuit Board was created for this purpose:

• Voltage Regulation - The PSoC 5LP requires a 5v power supply. The vehicle however
runs using 12v, and thus the voltage needs to be stepped down.

• Controller Area Network - A CAN transceiver converts CAN HI and CAN LO signals
to RX and TX signals which can be used by the PSoC’s CAN module.

• Digital Input Filtering - A Schottky diode pair, two resistors and a capacitor filter
the incoming digital signals; clamping the voltage between zero and five volts, as well as
filtering out high frequency noise.
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• Digital Output Filtering - Similar to input filtering, a Schottky diode pair clamps the
voltage, and a resistor limits the current draw.

• Analogue Input and Output Filtering - Analogue inputs and outputs both use a
Schottky diode pair to clamp the voltage between zero and five volts.

• ASSI MOSFET - The vehicle is required to have ’Autonomous System Status Indicators’
which indicate what state the PSoC state-machine is currently in. The PSoC is the source
of truth for the state-machine’s state, and hence has control over the ASSI’s. Two digital
outputs from the PSoC switch two MOSFETs, one for the yellow LEDs and one for the
blue LEDs. When switched, the MOSFETs connect drain to source, providing a path for
the LEDs to sink current and turn on.

• EBS Interlock - Multiple inputs and outputs from the PSoC are required by the EBS
Interlock circuit, which was developed by the Low-Voltage subsystem designers. These
connections are routed on the PCB. The EBS Interlock Circuit interfaces with his PCB
through a set of header pins.

The PCB board was designed in Altium 16 and aims to serve all of the above requirements.
All inputs and outputs to the PCB are routed through Molex Microfit connectors, which the
team has past experience with. The latest revision of the PCB board contains

• 12 Digital Outputs, 7 of which are routed to the EBS interlock PCB

• 8 Digital Inputs, 3 of which are routed from the EBS interlock PCB

• 8 Analogue Inputs

• 4 Analogue Outputs

• CAN TX and RX

• UART TX and RX (routed to i7 processor)

• 12v Input and Ground

• Shutdown Circuit In and Out

• Brake power In and Out

The board has been designed with more digital and analogue IO than required to allow for future
expansion of the system if required. See Appendix A for a full list of inputs and outputs.
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Figure 4.7: The PSoC PCB
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Chapter 5

Software

5.1 ROS Node Architecture

The autonomous system is comprised of numerous processing nodes. A pictoral representation
of the system is described below

Figure 5.1: ROS Node Overview Diagram

A description of each node and it’s inputs and outputs are listed below.

5.1.1 LiDAR Node

This node connects directly to the Velodyne VLP16 LiDAR via Ethernet using the UDP proto-
col. It consumes incoming point clouds from the sensor, and processes the sweeps to determine
where cones are in the world. These cone positions are then relayed to the sensor fusion node
for further processing.

5.1.2 Camera Node

The camera node connects directly to the Stereolabs ZED camera. It then processes the incom-
ing images using YOLOv3 to determine cone positions in one of the images. Stereo-matching is
then performed to determine cone depth, which results in a 3-dimensional cone measurement.
Then is also relayed to the sensor fusion node for further processing.
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5.1.3 GPS Node

The GPS node connects directly to the Swiftnav Piksi-Multi GNSS Module, and receives in-
coming GPS, IMU and Magnetometer data. This data is then also forwarded on to the sensor
fusion node.

5.1.4 Sensor Fusion Node

This node contains an EKF which performs state estimation and Simultaneous Localisation and
Mapping (SLAM). It takes two types of cones measurements as inputs, one from LiDAR and
one from Cameras. Within the filter it performs data-association, which allows it to associate
new incoming measurements with previously seen measurements. It keeps track of the car’s
position, velocity, acceleration, yaw and yaw rate, as well as all of the cones and their position
in the world. Measurements from the inertial measurement unit enables this node to update
it’s state rapidly. If just the IMU was used, then drift would occur as time progressed. However
by incorporating cone position measurements and GPS measurements, this issue is solved.
Ultimately this processing node outputs two things.

• The Vehicle State. This include position, velocity, acceleration, as well as yaw and yaw
rate.

• A list of cones. These are simply Cartesian X-Y coordinates of the cones in the origin
(world) frame.

These two outputs are passed to the path planning node.

5.1.5 Path Planning Node

This node receives the list of cone positions and the estimated vehicle state. Using this data,
and depending on the event type and lap number, a path trajectory is calculated. From this
path, and the current vehicle state, desired vehicle torque and steering angles are generated,
and sent to the sensor interface node to be relayed to the vehicle through the PSoC.

5.1.6 Sensor Interface Node

This node provides an interface for other nodes to transmit and receive data from the vehicle. It
opens a serial connection to the PSoC micro-controller, and relays commands and data to and
from the device. This abstracts away the complications that arise using UART, and provides
a ROS-compatible interface for the other nodes to utilize.

5.2 Master Node

This node doesn’t appear in the above diagram, however it does exist and is arguably one of
the more important nodes in the system. The master node is responsible for controlling the
state of the ROS system, as well as performing sanity checks to ensure the computing system
is in a safe and reliable state. When the autonomous system is started, the master node as well
as all of the above nodes are spawned. Each ’child’ node ’connects’ to the master node through
ROS, by publishing and subscribing to specific topics.
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5.3 Child Nodes

Each of the above nodes is classified as a ’child’ node in the system. These nodes all subscribe
to the /mms/master/command topic, and take appropriate actions when commands such as
’GO’ and ’STOP’ are received from the master node. They also publish to a heartbeat topic,
classified by the schema /mms/<NodeName>/heartbeat. The master node listens to these
heartbeats, and sends its own heartbeats to the PSoC.

5.3.1 Child Node State Machine

Each child node maintains a small internal state-machine.

Figure 5.2: Child Node State Diagram

Initializing The node is currently setting up, connecting to other nodes and sensors.
Ready The node is ready to begin performing its required function instantly

upon request.
Running The node is processing data, doing what it’s supposed to. Everything is

fine.
Fault A non-fatal error has occurred. The node may be able to recover. e.g.

The GPS has lost the base-station signal.
Failure A fatal error has occurred. The node can’t recover without human inter-

vention. The vehicle should stop.

The transition from ’Ready’ to ’Running’ is triggered by the Master node. All others occur
due to internal mechanisms within each node, which are specific to the node.

5.4 Heartbeats and Safety

Each child node must publish regular heartbeat messages, at a rate of 5Hz to the master node.
The master node receives these heartbeat messages, and ensures the system is running correctly.
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It knows what node state configurations are valid, and will attempt to stop the car if the ROS
system enters an invalid state. For example, the camera node may enter the ’fault’ state, this is
potentially valid as the system can still use LiDAR for cone detection. However if the camera
and LiDAR nodes both enter the ’fault’ state then the vehicle must come to a stop as the
system is potentially no longer stable.

If an invalid configuration of child nodes occurs, or a child node ’falls’ off the network and is no
longer publishing heartbeat messages, then the master node will attempt to stop the vehicle by
sending the appropriate command to the PSoC. The master node publishes it’s own heartbeat
messages too. These are routed to the PSoC through the sensor interface node. The PSoC main
loop monitors these heartbeats, and shuts down the vehicle if requested, or if the heartbeat
messages go missing.

The electric car that the autonomous system is being implemented on contains what is known
as the ’shutdown circuit’. This is an electrical loop that runs through the vehicle’s loom, which
is normally open. When closed, the vehicle is able to operate, however, when opened power
from the vehicle’s accumulator is disengaged and the vehicle’s tractive system is disabled. The
shutdown circuit will latch open in the event of failure, and a power cycle is required to get the
vehicle started again.

The PSoC and its supporting circuitry utilizes this shutdown circuit to stop the vehicle. The
PSoC has two digital outputs which are routed to the ’EBS Interlock Circuitry’, which was
developed by the Low-Voltage subsystem designers. This circuitry handles the ’Emergency
Braking System’, and it’s main purpose is to stop the vehicle in the case of failure. It’s
implemented solely using digital logic gates, and thus common computer related issues don’t
occur. Housed on the EBS Interlock circuit is an opto-MOSFET, which is wired in series with
the shutdown circuit. A watchdog timer is connected to the PSoC. Every cycle of the main
loop, this digital output is toggled by the PSoC, resetting the watchdog timer. The PSoC also
outputs a constant HIGH (5v) signal to the EBS circuitry, which is fed into an AND gate.
If this signal goes LOW (0v) the shutdown circuit is opened. If the watchdog timer doesn’t
receive a pulse in a timely fashion from the PSoC (due to it being stuck in an infinite loop),
then the shutdown circuit is also opened.

If the PSoC wishes to stop the vehicle, either because it’s detected a fault (missing heartbeats
from ROS) or it’s been told to do so by the ROS system, then it will simply drive the afore-
mentioned digital output pin to 0v, which activates the EBS interlock circuitry and opens the
shutdown circuit.
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Figure 5.3: Example Heartbeat Flow Diagram

The entire system, by design, will fail into the off state and bring the vehicle to a stop. Every
component within the autonomous system must actively work hard to keep the vehicle running.
If any piece of the processing pipeline fails, the EBS will trigger and bring the vehicle to a
stop.

5.5 PSoC Processing

As with all microcontrollers, the PSoC contains an infinite main loop. Within the main loop,
the following actions are performed:

Update UART / ROS
Communication

Processes any bytes in the UART RX buffer, and when
ready, constructs a message object from this data. The
message’s integrity is checked using checksums, and then
sent to the message processor. A switch-case statement
selects the appropriate handling function, and the func-
tion is executed, generating and queuing any response
messages generated.

Update EBS State Parses the current digital / analogue IO values to deter-
mine the state of the Emergency Braking System.

Update Service Brake Measures service brake sensors, and monitors the state
of the service brake.

Update Steering and
Throttle Control

Updates any control signals being sent to the inverter
and service brake actuator. If the PSoC statemachine is
not in the AS DRIVING state, then this section must
ensure that no actuation requests from ROS are serviced
here.

Update State machine Updates the PSoC / Autonomous state-machine. This
is defined and required by rules.

22



Figure 5.4: Pictorial Representation of PSoC Processing Flow

It is required by rules to implement a state-machine to control the autonomous system. This
is implemented on the PSoC due to its robustness and ’closeness’ to the vehicle and its sensors
and actuators.

Figure 5.5: Autonomous Statemachine[10]

Two other processes are occurring in the background. These are interrupt-driven and don’t
require intervention from the main processing loop:
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Update Analogue Inputs A single Analogue to Digital Converter reads analogue
signals from 8 analogue inputs. After each read, an ana-
logue multiplexer is switched so the next analogue input
can be read.

Update UART RX / TX New bytes from the i7 are queued up in the RX buffer.
Any bytes to be sent are removed from the TX buffer
and sent to the i7.

5.5.1 Custom UART Message Protocol

The Intel i7 processor and the PSoC 5LP communicate using UART. When using UART, it
is guaranteed with relatively high accuracy that a received byte is identical to the byte that
was sent. This is done by appending a CRC to the bit-stream, and verifying that the received
CRC bit matches the computed CRC. Whilst this helps verify each individual byte, it doesn’t
verify that a sequence of bytes are correct. If bit errors occur, bytes can be discarded and not
received. When a message spans over multiple bytes, it requires extra mechanisms to ensure
all of the bytes have been received.

To ensure corrupt messages sent between the i7 and PSoC are caught and handled appropriately,
a custom message protocol has been designed. By appending and prepending the payload with
extra bytes, a more robust messaging system is created which ensures message integrity. The
structure of this message structure is outlined below:

Start Byte MID Command Size Payload CRC ADD CRC XOR
0x9d 0-255 0-255 0-250 Dynamic Data 0-255 0-255

Table 5.1: UART Message Structure

A description of each component of the message structure is outlined below:

• Start Byte - This byte signifies that what follows is a message structure. This is partic-
ularly useful for when an error does occur and the expected ’end’ of a message is actually
mid-way through the next message. Bytes must be skipped so that the receiving end
knows where the new message begins.

• Message ID - This byte is used for response matching. This should be incremented for
each message sent that requires a response. Any response message from the PSoC will
use the same message ID as the request.

• Command - This byte represents what action should be taken. The meaning of this is
also context-dependent. For example, if the PSoC receives a ’get digital pin’ command
it will expect the payload to contain a list of digital pins to read. The response message
from the PSoC to the i7 will use the same command and message ID, however the payload
will be slightly different; containing both pin numbers, and the read values.

• Size - This is simply the size of the following payload. To enable easier development on
the PSoC, this should be limited to 250 bytes, so 8-bit integers can be used to reference
bytes within the message structure.

• Payload - This is a dynamic sized payload, the contents of which depends of the command
type
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• CRC ADD - A summation of all the previous bytes, from ’Start Byte’ to the end of the
payload

• CRC XOR - An XOR summation of all the previous bytes, from ’Start Byte’ to the end
of the payload. Does not include the ’CRC ADD’ byte.

This message structure has been implemented both on the PSoC in C, and in a ROS node in
C++.
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Chapter 6

Computing Constraints

The autonomous computing system must be able to run on the vehicle without being tethered to
a power supply. This constrains the amount of power the system can consume. In conventional
desktop computers, it’s not uncommon to have a single computer which consumes over 500
Watts or more. Running a system such as this on a 20 Amp-hour 12V battery, not including
all of the other components such as actuators and sensors, results in a maximum of 30 minutes
of runtime. Whilst this is potentially long enough to last an entire track drive, it’s still quite
short for testing purposes, and would make testing sessions difficult.

What follows is some techniques that have been or can be employed in the future to reduce the
required processing power, and hence electrical energy consumption.

6.1 Jetson TX2 CUDA

Conventional GPU’s can consume over 100 Watts of power, however the Jetson TX2 mod-
ule only consumes 7.5 Watts of power when processing is at a maximum. This reduced power
consumption does come at the cost of computational power. The TX2 is only capable of approx-
imately 0.6 single-precision TFLOPS, however if the precision is halved then the performance
doubles to 1.3 TFLOPS (due to the TX2 having a CUDA Compute Capability of 6.2 [8]). This
allows more performance to be extracted, however only in specific circumstances.

The algorithms running on the Jetson TX2 are yet to take advantage of any reduced precision
computing. The camera subsystem designers are still developing stereo matching, and are
currently following the philosophy of ’design now, optimize later’. Once the algorithms are
complete and bottle necks are determined, CUDA code can potentially be written to increase
performance in the required areas.

6.2 Intel Integrated Graphics

On the Intel i7 processor, there is still performance to be extracted. The i7 contains an in-
tegrated graphics processing unit: Intel R© UHD Graphics 630. This contains 184 cores, has a
1150 MHz boost clock speed, consumes 15 Watts and in theory, can produce 400 GFLOPS
of processing power. This is usually used to render the desktop, however on the autonomous
vehicle there is no screen to be displayed, and this processing potential is being unused.

OpenCL can be used to tap into this processing power, however writing OpenCL code is quite
difficult, and there are many optimizations required to make it worth while. This issue has
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already been solved by the ’ArrayFire’ library and others like it, which abstracts the parallel
computing language from the C++ code, and allows code to be written like follows:

// sample 40 m i l l i o n po in t s on the GPU
array x = randu (20 e6 ) , y = randu (20 e6 ) ;
array d i s t = sq r t ( x ∗ x + y ∗ y ) ;
// p i i s r a t i o o f how many f e l l in the un i t c i r c l e
f loat num inside = sum<f loat>( d i s t < 1 ) ;
f loat pi = 4 .0 ∗ num inside / 20 e6 ;
a f p r i n t ( p i ) ;

This is much simpler than OpenCL, and already performs many optimizations ’under-the-
hood’ to speed up the processing time significantly. To test the potential processing power
of the integrated Intel graphics processor using ArrayFire, the Monte Carlo pi-approximating
algorithm was run on a laptop, utilizing:

• The CPU with standard C++

• The CPU with ArrayFire, using all 4 processing cores

• The Intel GPU with ArrayFire

• The NVIDIA GPU with ArrayFire

The results of this test were quite impressive.

Figure 6.1: ArrayFire Monte Carlo algorithm timing

Using just the CPU resulted in rather poor performance. Using the Intel Integrated Graph-
ics processor provided a significant improvement, almost 50 times faster than a naive C++
implementation. Finally, the NVIDIA GPU can be seen to give the best performance gains,
with a processing speed potentially 140 times faster, however only when operating on large
datasets.
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Whilst this isn’t exactly representative of what performance gains will be seen when optimizing
algorithms for the autonomous vehicle, it is indicative of the potential improvements that can
be expected.

Jetson TX2 = 1300× 106 × 256× 4 = 1331× 109 FLOPS

Intel UHD Graphics = 1150× 106 × 184× 2 = 423× 109 FLOPS

6.3 Eigen MKL

Many of the algorithms being run on the vehicle require the processing of large matrices. For
example, the SLAM EKF maintains XY coordinates of potentially up to 300 cones. This
results in a 600×600 covariance matrix, which must be multiplied by various other vectors and
matrices every time cone estimates are updated. If multiplied by another 600 × 600 matrix,
this requires approximately 216 million multiplications and 215.65 million additions.

Intel provides the Intel Math Kernel Library which aims to improve processing times by fully
utilizing all of the features provided by an Intel processor. This includes parallelizing processing
over multiple CPU cores, and utilizing special instructions within the CPU to optimize calcu-
lation times. This library has been integrated with Eigen, a library for linear algebra, matrix
and vector operations, amongst various other mathematic related functions.

’Eigen MKL’ is being used by the SLAM EKF processing node, and in its current state, enables
it to run in real time on the Intel i7 processor. Future additions are required to be added to
the EKF to integrate camera and GPS measurements, however these additions are being care-
fully constructed to not require exorbitant amounts of unnecessary processing, so the current
performance being seen should not be degraded significantly.
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Chapter 7

Testing

The system has been periodically tested over the entire year, with numerous testing sessions
every month collecting sensor data through ROS. Various other tests have been performed to
validate design decisions and verify the system will operate correctly once the other processing
components are ready.

7.1 Testing Box and Trolley

The Low-Voltage subsystem engineers designed the ’Autonomous Testing Box’. This is simply
constructed out of wood, and houses the two computing units, as well the GPS boards, the
LiDAR interface box, and the low-voltage 12V battery. It also includes the various switches
required on the vehicle, such as the GLVMS, ASMS and TSMS. This box was mounted on a
4-wheeled trolley with the ZED and LiDAR sensors mounted, and was manually pushed around
various tracks to collect representative data.
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Figure 7.1: The testing trolley, recording a straight-line track marked by yellow and blue cones.
Credit: Jack Coleman

7.2 ROS Message Delay

The designed autonomous computing system consists of two networked computers. These
computers must share information quickly and efficiently to ensure the vehicle can operate
correctly. Tests were conducted to measure the latency between two ROS nodes over a network
connection. A laptop was connected directly to the Jetson TX2. A ROS package was created,
which contained two nodes: an ’echo’ node and a ’transmit’ node.

• The echo node received payloads on one topic, and piped them to another topic imme-
diately. This was run on the Jetson TX2.

• The transmit node published payloads to one topic, and subscribed to another to receive
the response messages from the echo node. This was run on the laptop.

The payload size was gradually increased, starting at 1 byte, and finishing at 1500 kilobytes.
Each payload size was sampled multiple times to get an accurate measurement of the round-trip
time.
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Figure 7.2: Round trip message delay between two ROS nodes on networked computers

There is a significant spike at approximately 1 kilobyte. This is due to the TCP protocol trying
to respect the Maximum Transmission Unit (MTU) of Ethernet, 1500 bytes. If the payload
contained within a TCP packet is greater than approximately 1000 bytes, then the packet will
be split into multiple chunks. Each chunk must be sent, received, and the sender must then
receive a response acknowledgement from the receiving end, before the next chunk is sent. This
introduces significant delay, and seems to cause issues at the transition point. Once the payload
size increases significantly beyond the MTU size, the TCP protocol begins to operate efficiently
once again.

For small packet sizes, the transmission delay is sub-millisecond. The round-trip time is approx-
imately one millisecond or less for packets smaller than 1000 bytes. The majority of messages
being transferred between the Jetson TX2 and the i7 are quite small. These include cone posi-
tion estimates, and heartbeats / commands to and from the master node. These messages are
expected to be below 1000 bytes, and thus the time it takes to transmit data one-way between
the two computing units is expected to be approximately half a millisecond.

If transmission times do become a problem, it is possible to change the transmission protocol
from TCP/IP to UDP. TCP is safer and has more guarantees, however if something does go
wrong or missing, it can take precious time for the protocol to realize, and correct the issue.
With UDP this doesn’t occur. The packet is simply transmitted and then forgotten about. If
it doesn’t make it to the destination, then it is lost forever, unless another external mechanism
retains the message and resends it. This sounds terrible, and it is for certain situations, such as
when downloading a file; a missing packet would corrupt the file. However for this particular
use-case, UDP may be quite beneficial. If a packet goes missing, by the time it is realized by
TCP, new data may be ready to transmit. In this case it’s better to just use the new piece
of information, as this is more up-to-date and accurate, especially in the case of cone position
measurements from a high-speed vehicle.

UDP is supported by ROS, and can be requested as the transmission protocol when advertising
or subscribing to a ROS topic.
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Chapter 8

Miscellaneous Work

In pursuit of realizing Monash Motorsport’s goal of an autonomous vehicle, miscellaneous pieces
of work have been performed. Whilst they don’t necessarily relate directly to the computing
system, they are explained below for completeness.

8.1 Camera Testing

8.1.1 Basler Camera Testing

Extensive camera testing was performed in the first semester of 2018. The purpose of these
tests were to collect stereo image data using different baseline widths to determine the accuracy
of a stereo camera. In pursuit of this a python script was written, which interfaces with ROS
and OpenCV to record images from two Basler Cameras.

Figure 8.1: Stereo Image Pair, Captured with two Basler Cameras

This python script consumed images from two other ROS nodes, one node for each Basler
camera. These images were displayed in an OpenCV window. If the user pressed the s key, the
stereo images were saved to disk. An Arduino was connected to the computer using UART,
and provided a physical ’trigger’ signal to the two cameras to force them to capture an image
at the same time. The python script connected to this Arduino and would trigger a new stereo
image capture when required.
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8.1.2 ZED Camera Stereo Image Recording

Originally the Stereolabs ZED ROS Wrapper was being used to retrieve left and right images
from the ZED camera. This had some issues, particularly when running at a high resolution
(1920×1080×2). The image pair couldn’t be transmitted between ROS nodes fast enough, and
this resulted in a frame-rate of approximately seven FPS, instead of 30. A new ROS package
was created, which interfaces directly with the ZED SDK and wrote the images to a ROS bag,
bypassing any message transmission. This improved the frame-rate slightly, however it was
still only performing at 15 frames-per-second. After disabling the saving of images to disk,
it appeared that the ZED SDK was the bottle neck, and so it was removed from the system
entirely. OpenCV was used instead to capture images from the ZED. These images were then
written to a ROS bag. Whilst it worked correctly on the testing laptop, it failed to achieve
30 frames per second on the Jetson. At first it was believed that the bottleneck was the disk
writing speed, and so an attempt was made to compress the images using the L4Z algorithm.
This was a rather terrible idea and only made the situation worse, reducing the recording rate
to 7 FPS again.

Finally, it was decided to bypass all things ROS. The stereo image pair was simply captured
from the ZED using OpenCV, and written straight to disk in raw format with a custom header
structure. The processing was split over multiple threads, one thread for capturing images, one
thread for transforming image data into a writeable format, and another for writing the images
to disk. Pre-allocated std::vectors were used to prevent reallocation of memory, and a pool of
these vectors was kept and drawn from when required.

This finally resulted in a 30 FPS recording of 2 1920×1080 images on the Jetson TX2. Another
script was written later to extract the images from the raw image file, and add them to a ROS
bag for easy playback later. The only downside to this approach is the data size. Two 1080p
images, with 3 colour channels at 30 FPS requires:

1920× 1080× 2× 3× 30 = 356 Mega-Bytes Per Second

The Jetson TX2 has a 250 GB Solid-State Drive attached, this allows for only 12 minutes
of data recording before the drive is full. This is too short for a track-drive, and a larger
SSD may be required in the future if we wish to record stereo image data when running at
competition.

8.2 Remote Control Actuation

The first milestone for the vehicle is early 2019, where the vehicle shall be remotely controlled.
This will allow the team to test the actuation system without worrying about the complexities
involved with the sensors and path planning components.

To facilitate this, a simple ROS node was created, which interfaces with a Linux joystick input
device, and publishes ROS messages which contain information about the actuation states of
the triggers and buttons. To test this system, another ROS node was created which receives
these inputs, and simulates a simple vehicle using the kinematic bicycle model[11]. Outputs
from this simulation were published as ROS visualization messages, and displayed in RVIZ; a
utility for visualizing data and topics in ROS.
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Figure 8.2: Screenshot of RVIZ Vehicle Visualization

Whilst there is still a lot of work to be done with integrating this component into the au-
tonomous system, the foundation has been laid and future work can build upon the system
that has already been designed.

8.3 Kalman Filter and Time Message Reordering

One issue that needs to be solved is the latency of the various sensors. The SLAM EKF re-
quires that all measurements are applied in the order they were measured in. The LiDAR is low
latency, and so a measurement may only take 10 milliseconds to reach the Kalman filter. How-
ever, the camera system exhibits high latency, and when a measurement arrives at the Kalman
filter node, it may be from over 100 milliseconds ago. If the LiDAR measurement has already
been applied, then the camera measurement cannot be applied without rolling the Kalman
filter back, applying the camera measurement first, and then the LiDAR measurement.

There are a number of ways to solve this issue

• Using the aforementioned ’rollback’ method, where the previous states are recorded and
stored. When an old measurement arrives, the filter is ’rolled back’ to the previous state,
the new measurement is applied, and the proceeding measurements are re-applied. This
is potentially very slow and will waste computation time.

• Propagate the measurement forward in time. Using the change in estimated state, the
measurement can be transformed to behave as if it was measured now, instead of 100
milliseconds ago. This has the downside of not being numerically stable in certain cases,
as the filter is basically using a previous estimate to update a new estimate.

• Delay incoming measurements by the highest latency sensor. e.g. delay LiDAR measure-
ments by 100 milliseconds, so camera measurements have a chance to be applied first.
This has the downside of increase estimation latency.

The current plan is to utilize the last option, and combine it with the first option. The first
option is ideally the best solution, however the increased computation time is detrimental to
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system performance. If the Kalman filter is constructed correctly however, then this perfor-
mance loss can be reduced significantly. Measurements from the GPS and IMU sensors only
affects a small portion of the Kalman filter state. Thus these measurements will be applied as
they are received. The LiDAR shall be delayed to be synchronized with the camera latency.
When it’s time to apply a cone measurement from the LiDAR or cameras, the Kalman filter
will be rolled back. However only IMU and GPS measurements are being rolled back in this
case, which is significantly faster than rolling back cone measurements. The cone measurement
is then applied, and the IMU and GPS measurements are re-propagated through the Kalman
filter to determine the current state.

Simply put, measurements from the LiDAR and Camera help localize the vehicle within the
track. These are slow and cumbersome to apply to the Kalman filter. IMU and GPS help
determine where the vehicle has moved in a short period of time. These are small and fast to
apply to the Kalman filter. The IMU does introduce drift, however the periodic measurements
from GPS, LiDAR and Cameras remove this drift.

To delay these measurements, a simple library has been written. When instantiated, the
TimeReorder object creates a vector which is sorted by the time the message should fall out
of the buffer. New messages are inserted into the vector in the correct ordered position. A
ROS Timer waits for the shortest period and calls a callback function with the delayed message
when ready. To use, it’s quite simple. Simply create the object, specify a callback function
and add messages as required. This will be used by the SLAM system to reorder LiDAR and
Camera measurements as required.

mms : : TimeReorder<geometry msgs : : PointStamped> r eo rde r ( ro s : : Duration ( 1 . 0 ) ,
[ ] ( const geometry msgs : : PointStamped& msg){
// Delayed messages e x i t the b u f f e r here

} ) ;
geometry msgs : : PointStamped msg = getMessage ( ) ;
// Messages en ter the b u f f e r here
r eo rde r . addMsg(msg . header . stamp , msg ) ;

8.4 M19D Dashboard

Whilst both computing units are capable of outputting video data to a display over HDMI, this
is unnecessary and thus is not being used on the vehicle. However this makes interacting with
the computing units rather difficult. One must SSH into the machine and execute commands
from the command-line. To do this, the IP address of the machines must be known. When
connecting to a WiFi network such as Monash eduroam, IP addresses change almost daily. To
solve this issue, the M19D Dashboard was created.
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Figure 8.3: Screenshot of the M19D Web Dashboard

Upon startup, the two computing units instantiate a NodeJS process. This process connects
to an MQTT broker that is situated online, and periodically publishes telemetry data to the
broker. This includes RAM usage, CPU usage and temperature sensors. Another NodeJS
process running side-by-side with the MQTT broker monitors these MQTT messages, and
retains the latest telemetry information for each connected machine. It also maintains an
HTTP server, which serves static resources such as scripts, CSS and the main html page. It
also provides a REST API for querying the IP addresses of connected machines.

Users of the dashboard are first presented with a bare screen. Upon clicking a button, they
are also connected to the MQTT broker using WebSockets. All messages published by the
computing units are now forwarded to the web page. A script on the page extracts the relevant
data, and displays live updates of performance metrics and IP addresses of the various network
interfaces. The dashboard also contains a button to shutdown the computing units when they’re
no longer required.

The NodeJS server component exposes an endpoint, which returns the IP address of the re-
quested computing unit. The URI is as follows:

/ip/<HostName>/<NetworkInterface>

This allows the IP address of the machines to be fetched dynamically from within a bash script,
and allows the creation of scripts which automatically SSH into the desired machine, without
the end user worrying about what the actual IP address is.

The server components are currently running on a personal EC2 instance using Amazon Web
Services. In the future it is planned to decouple the server components from AWS and im-
plement them on the computing units themselves, so no external internet connection is re-
quired.

8.5 Thermal FEA

One test that is performed at competition is the ’rain test’, where water is lightly sprayed over
the vehicle to ensure that nothing is damaged. Thus the computing units must be waterproof
when mounted on the vehicle, otherwise this test will fail. However making computers wa-
terproof, while still allowing heat to leave the system is a difficult task. The devised solution
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utilizes blocks of aluminium to extract heat from the processing units, and transfer that heat to
the externals of the computing box to be cooled by a waterproof radiator and fan. A previous
test of the computing system showed that under maximum load, the processor isn’t cooled fast
enough, and performance is throttled to ensure the CPU temperature remains at 80 degrees.
Thus a more efficient cooling design will enable higher performance of the processor.

To ensure this system shall work, thermal Finite-Element-Analysis was performed. The follow-
ing assumptions were made:

• Only the externals of the box and heatsink radiate heat.

• Only the externals of the box and heatsink convect heat.

• The heatsink has a convection coefficient of 60 W/(m2K)

• The box externals have a convection coefficient of 10 W/(m2K)

• Only the processors generate heat; 65 Watts at the i7 and 15 Watts at the Jetson TX2.

• All interfaces are perfectly conductive, i.e. no loss in heat transfer

• The ambient air temperature is 40 degrees

• The box is in complete darkness, i.e. it’s not in sunlight

Whilst there is at least another 40 Watts of heat being generated within the box due to passive
PCB components, this is difficult to model accurately. The FEA simulation performed doesn’t
take into account heat transferred between components, and the air inside the box. These
missing components will skew the results slightly, and should be kept in mind. The extra heat
generated will raise the ambient temperature, however the heat transfer through the air will also
lower the ambient temperature. How much each factor contributes is hard to determine.

The stock Intel heatsink was also simulated using similar assumptions. From previous testing
it was expected that the heatsink would reach a temperature higher than 80 degrees. However,
it did not.

Figure 8.4: Autonomous Computing Box Thermal FEA Results
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Figure 8.5: Intel Stock Heatsink Thermal FEA Results

From simulation, the aluminium heat-block solution is expected to reach a maximum temper-
ature of 57 degrees, whilst the Intel heatsink is expected to reach a maximum temperature of
68 degrees. This is both good and bad:

• The Bad: The thermal FEA performed was not entirely accurate, and isn’t indicative
of actual real-world thermal performance.

• The Good: The aluminium heat-block solution is thermally more efficient at extracting
heat from the system than the Intel cooler.

So while it is difficult to say exactly what kind of performance will be seen with the aluminium
heatblock design, it can be assumed that the performance will be better than the stock Intel
heatsink that is currently being used. Although, this isn’t exactly a very promising statement,
as the Intel heatsink is known for being sub-par.
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Chapter 9

Conclusion

9.1 Requirement Satisfaction

To reiterate, the high level requirements of the computing system were as follows:

1. Provide a unified platform for other subsystems to use for processing.

2. Provide a method to share information between multiple subsystems

3. Interface with the existing ECU, or, implement the functionality of the existing ECU

4. Be able to process images and feed-forward pre-trained neural networks

5. Implement a state-machine to keep track of the vehicle status

These requirements have been satisfied:

1. The hardware and utilities to interface with the hardware have been created. All of the
computing components are linked, either through Ethernet or UART, and there exists a
mechanism to interface with the vehicle.

2. Robot Operating System provides a robust method to share information between subsys-
tems.

3. Through the PSoC 5LP the system can interact with the ECU over CAN.

4. The Jetson TX2 is doing both of these tasks, processing images and feed-forward neural
networks.

5. The PSoC implements the state machine.

On top of these initial requirements, new issues have come to light that needed to be solved.
Safety of the autonomous system was not originally considered, however through the course of
development it was realized that safety is actually the number one concern. The method im-
plemented, using a combination of heartbeats and physical hardware solves this issue elegantly
and robustly.

Due to the ongoing nature of Monash Motorsport, this project is not complete. The autonomous
vehicle is not scheduled to be driving until mid 2019, and there is still much work to be done
by all subsystems. Off the back of the work done in this project the autonomous system shall
be built, and hopefully it will help Monash Motorsport win respect and glory in the European
campaign of 2020.
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9.2 Future Work

As mentioned, the project is far from over. Actuation components must be purchased and fit
to the vehicle. The autonomous computing box must be cut and assembled. The SLAM EKF
must be upgraded to work with Camera cone measurements, and the Path Planning algorithms
still require some effort before they’re ready to control the vehicle on-track.

Specific to computing, the PCB boards must be sent for manufacture, and then assembled and
tested. The statemachine on the PSoC must be completed, with all states and state transitions.
It must subsequently be tested to ensure it behaves as expected.

The camera subsystem designers have struggled with the Jetson TX2 over the past few months.
The ARM processor is far from powerful, and it’s difficult to optimize code for CUDA, using
reduced precision computing. As a result, cone detection is only just running at 12 frames per
second, and ideally should be running faster. In the future it may be beneficial to either upgrade
the TX2 to a more powerful machine, such as the NVIDIA Xavier which came onto the market
quite recently. Alternatively a consumer-grade graphics card such as a GTX 1050 could be
utilized, connecting it to the i7 processor through the spare PCI-Express slot. This has a
theoretical performance of 1,862 GFLOPS, just under 3 times the performance of the Jetson
when working in single precision mode. This would require an additional 70 Watts of power and
would require a larger battery to compensate for the extra energy consumption. However this is
far from impossible. The Jetson TX2 was designed for highly constrained applications, such as a
drone; an autonomous racing vehicle has far fewer constraints and it’s more than possible
to add a second battery when more power is required.
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Glossary of Terms

F-SAE Formula - Society of Automotive Engineers. A sub-division of the SAE
which oversees formula student competitions around the world.

ROS Robot Operating System. A meta operating system for robotic applica-
tions.

PSoC Programmable System on Chip. A microcontroller developed by Cypress
Systems. Very versatile.

MQTT A publish/subscribe messaging service, originally developed for connect-
ing oil pipelines over unreliable satellite networks.

NodeJS Javascript for a server. Javascript usually runs in a web browser, however
it’s also possible to run javascript on a server. Due to the structure of
Javascript (single threaded, with an underlying event-queue) it’s very
good for processing tasks which are required to wait on other tasks. e.g.
persisting data in a database, or querying a web-service and waiting for
the response. NodeJS is built on Google’s V8 Javascript engine.

UART Universal Asynchronous Receive Transmit - A computer hardware de-
vice for asynchronous serial communication. ’Universal’ meaning config-
urable, you can change the baud rate, start and stop bits, flow control
etc.

SLAM Simultaneous Localization And Mapping - An algorithm which uses an
extended Kalman filter to determine not only where the observer is, but
where landmarks in the world are too. This is exactly what the au-
tonomous vehicle needs to do.

Kalman Filter An algorithm which combines a series of statistically noisy measurements
over time, to produce estimates of unknown variables, which are more
accurate than any single measurement alone.

EKF Extended Kalman Filter - A version of the Kalman filter, which enables
you to use non-linear measurements, i.e. measurements involving sine or
cosine.

GLVMS Grounded Low Voltage Master Switch - Enables low-voltage power to
the vehicle.

ASMS Autonomous System Master Switch - Enables the autonomous system.
When this is off the vehicle is incapable of performing any autonomous
action.

TSMS Tractive System Master Swtich - Enables / Disables the vehicle’s tractive
system

FLOPS Floating Point Operations Per Second - A measure of how many numbers
can be processed every second. An operation is usually classified as an
addition, subtraction, multiplication or division.

Floating Point
Number

A number, which is represented by a base and exponent. The exponent
causes the decimal place to ’float’, allowing a wide range of possible
values.
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Appendix A - PSoC Pinout

Name PSoC Pin Description
Digital Output 1 P2.0 ASSI Yellow GND Sink (Sink LED current to ground)
Digital Output 2 P2.1 ASSI Blue GND Sink (Sink LED current to ground)
Digital Output 3 P2.2 TBD
Digital Output 4 P2.3 TBD
Digital Output 5 P2.4 TBD
Digital Output 6 P2.5 Initial Brake Check
Digital Output 7 P2.6 Watchdog PWM Out (Trigger EBS when missing)
Digital Output 8 P2.7 Shutdown Close (manually turn off tractive system)
Digital Output 9 P12.5 Set Driving State (EBS Ref Guide)
Digital Output 10 P12.4 ARM EBS
Digital Output 11 P12.1 Statemachine OK
Digital Output 12 P12.0 Set Finish State

Digital Input 1 P3.0 ASMS
Digital Input 2 P3.1 TSAL
Digital Input 3 P3.2 TBD
Digital Input 4 P3.3 TBD
Digital Input 5 P3.4 Shutdown Circuit Is Closed
Digital Input 6 P3.5 Driving State Active
Digital Input 7 P3.6 EBS Is Armed
Digital Input 8 P3.7 EBS Is Activated
Analog Input 1 P15.2 Steering Angle Sensor Feedback
Analog Input 2 P15.3 Brake Actuator Feedback
Analog Input 3 P15.4 Brake Line Pressure 1
Analog Input 4 P15.5 Brake Line Pressure 2
Analog Input 5 P0.0 EBS Pneumatic Energy Storage Pressure
Analog Input 6 P0.1 TBD
Analog Input 7 P0.2 TBD
Analog Input 8 P0.3 TBD

Analog Output 1 P0.4 Steering Angle Output
Analog Output 2 P0.5 Brake Pedal Actuation Output
Analog Output 3 P0.6 TBD
Analog Output 4 P0.7 TBD

CAN RX P1.6 CAN Receive
CAN TX P1.7 CAN Transmit

UART RX P12.6 UART (to i7) Receive
UART TX P12.7 UART (to i7) Transmit
XTAL 1 P15.0 External Crystal Oscillator, Pin 1 (24 MHz)
XTAL 2 P15.1 External Crystal Oscillator, Pin 2 (24 MHz)
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Appendix B - PSoC Command List

ID Command
Name

Payload In Payload Out Description

1 Get State None 1 Byte - The
state

Gets the state of the
internal PSoC statema-
chine. This is the state
machine as defined in
FSG rules.

2 Select
Mission

1 Byte - The
mission

None Selects the mission

10 Set
Digital Out

PinPairList None Writes a digital HIGH or
LOW to a set of output
pins.

11 Get
Digital Out

PinList PinPairList Gets the written digital
HIGH or LOW output
status from the output
pins.

12 Get
Digital In

PinList PinPairList Returns a list of digital
HIGH or LOW values

13 Set
Analog Out

PinPairList None Sets the desired analog
pin voltage. 16mV per
bit.

14 Get
Analog Out

PinList PinPairList Returns the set desired
analog pin voltages.

15 Get
Analog In

PinList PinPairList Returns the last value
read from a set of analog
input pins

255 Error None. String Message Errors from the PSoC are
sent back to the i7 using
this command.
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PSoC Payload Structures
Name Description
PinList A payload of size n, where n is the number of pins being queried.

Every byte simply represents a pin ID, starting at 0. For example.
0x00010203
Refers to pins 0, 1, 2 and 3. This is the same for both digital and
analogue.

PinPairList A payload of size 2n, where n is the number of pins being sent.
Every 2 bytes represents a pair, first value is the pin-ID, the second
is the pin-value. For analogue pins, this is 0-255. For digital pins,
0 = LOW
> 0 = HIGH.
For example, a digital command
0x01010200
Would represent Pin1 = HIGH, Pin2 = LOW. For an analogue
command
0x03FF040A
Would represent Pin3 = 255/255, Pin4 = 10/255

Appendix C - ROS Message Structures

Message Structure Description
Cone Header header

uint16 id
float32 x
float32 y
Time time seen
uint8 confidence
uint8 cone type
uint8 coordi-
nate frame

A single cone.
header: The time the message was generated
id: The local identifier of the cone. This is used to up-
date measurements in the Kalman filter.
x: The x position of the cone
y: The y position of the cone
time seen: When we believe the cone was seen in the
world
cone type: An enum which specifies the type of cone:
Blue, Yellow, Orange Big, Orange Small. The enum
values are stored in the message definition.
coordinate frame: Our own custom coordinate frame
designation. 0 for world, 1 for lidar, and 2 for camera.

ConeArray mms master msgs /
ConeLIST

Simply an array of cones. Allows us to bundle up mul-
tiple cones into a single message to avoid the overhead
that comes with TCP transmission of many small pack-
ets.

Heartbeat uint8 state
string message

state: The state of the node sending the heartbeat
0 = Init, 1 = Ready, 2 = Running, 3 = Fault, 4 = Failure
message: A descriptive message of why the node is in
the same. This can be blank, but if it’s an error, then
it’s good to specify why the error occurred, for logging
purposes.
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Appendix D - PSoC Circuitry

Digital Input Schematic

Digital Output Schematic

ASSI MOSFET Schematic

Analogue IO Schematic
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Main Circuit Schematic
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