


Perception Integration for an Autonomous Vehicle

Siriluck Ovenden

Final Year Project: 2018 Semester 2 – 2019 Semester 1

Department of Electrical and Computer Systems Engineering,
Monash University

Supervisor: Professor Tom Drummond

May 22, 2019



Significant Contributions

� Interfaced with LiDAR sensor data: extracted information from LiDAR packet,
created ROS node to subscribe from LiDAR sensor and publish to SLAM.

� Integrated GPS measurements into SLAM.

� Implemented an approximation of the Mahalanobis distance into SLAM.

� Tested and tuned noise parameters in the EKF.

� Automated existing cone detection labeller using template matching to aid
labelling efficiency and further tune the neural network.

� Miscellaneous:

– Designed LiDAR Mount welding jigs in NX12 CAD program

– Manufactured LiDAR mount for M19-D

– Researched FastSLAM
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Project Aim
To integrate data from various sensors on an autonomous racing 

vehicle in real time and improve sensor data acquisition. Data from 

various sensors such as LiDAR, stereoscopic cameras, GPS and 

IMU are to be integrated into an EKF SLAM algorithm to provide car 

and obstacle location to feed to path planning and motion control. 

Probabilistic Data Association
Improved SLAM by using the Mahalanobis distance which 

takes into account the uncertainty with which a cone was 

detected before adding it into the SLAM system. 

Image Labeling Tool
Prior to this project, a neural network was used to detect 

cones but had not been trained on enough data, so a tool 

was implemented to aid labeling of images. This involved 
adjusting and adding code to already existing open source 

software. Using template matching in OpenCV to 

detect and label cones decreasing tedious data labeling 
which is required to train a neural network.

Monash Motorsport

Monash Motorsport is a student run team that builds,

develops and designs FSAE race cars. The Autonomous 
Section is responsible for much of the software and hardware 

that goes into making a Formula Student Driverless car.

GPS integration
With the already existing EKF SLAM (Simultaneous 

Localisation and Mapping) implementation using LiDAR, the 

next step was to integrate other sensor data to provide the 

vehicle with more certainty of its position and the cone 

locations which mark out the track. This was done on Ubuntu 

Linux operating system, using C++ and ROS framework for 

program communication.

Add Template



Executive Summary

Formula Student is a competition for university students to build and design race cars. 
Monash Motorsport plans to compete in all three classes in 2019: electric, combustion 
and driverless. The driverless class involves an autonomous car fitted with sensors, 
computing units and actuators. As part of Monash Motorsport’s Autonomous Section, 
this project contributed to the integration of perception and Simultaneous Localisation 
and Mapping aspects of the autonomous vehicle. This project also implemented the 
integration of GPS measurements into the EKF SLAM algorithm to increase certainty of 
the car’s position. The accuracy of the vehicle’s position contributes to the accuracy of 
the map created by SLAM based on detected cones which mark out a track. Probabilistic 
data association was also implemented using the Mahalanobis distance, which increased 
the accuracy of the track map produced by the SLAM algorithm. Integrating stereo-
scopic cameras into SLAM proved to be difficult, as the neural network used for 
detecting camera cones required more training data. This project also details the custom 
implementation of an auxiliary program to aid in image labelling to further train the 
neural network in the future.
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Introduction and Motivation

Monash Motorsport (MMS) has been active since the year 2000. Traditionally, the 
purpose of the team was to design, build and race combustion cars in Australia at the 
Formula Society of Automotive Engineers (FSAE) competition. In 2017, MMS entered a 
second car into competition, an electric vehicle alongside the combustion car. In 2017, 
the competition expanded to include a new competition class called Formula Student 
Driverless (FSD) where Formula Student race cars navi-gate through known and 
unknown tracks. These tracks are simplistic in that they are primarily on flat ground, 
with coloured cones to form a path in an enclosed environment.

� In 2018, MMS started a new department dedicated in research and 
development for the driverless car.
� In 2019, the electric vehicle, named M18-E, was retrofitted with sensors, comput-

ing units and actuators to become the first ever Driverless car that MMS has 
produced, named M19-D. The research areas included low-voltage systems, 
stereoscopic cameras, LiDAR, GPS/INS, Computing, Path Planning and Ve-hicle 
Actuation.

In the first half of this project, the author was involved in LiDAR selection, LiDAR 
mount design and implementing Simultaneous Localisation and Mapping (SLAM). In the 
second half of this project, the author was part of the Perception section which includes 
SLAM, LiDAR, GPS/INS and stereoscopic cameras. The motivation for MMS to 
develop this car is to compete in Germany and promote interest in an Australasian 
driverless competition in the future. The motivation for this Final Year Project is to 
improve the perception and localization abilities of the race car.
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The Team

The purpose of Monash Motorsport is for students to practice and extend their 
engineering skills, professionalism, camaraderie and improve performance. The team 
typically consists of about 80 students who belong to various sections such as 
Aerodynamics, Autonomous, Chassis (and suspension), Powertrain, Business and 
Upper Management. The two cars shown in Figure 2.1 are the combustion car (66, left) 
and electric car (E65, right). The electric car was transformed into M19-D, the 
driverless car of 2019, by

� removing the front wing to make room for the LiDAR VLP-16 mount,

� installing a mount for the Stereolabs ZED camera and a mount for the Piksi 
GPS,
� having the right radiator replaced with the computing box which contains

interfacing components and computing units such as the NVIDIA Jetson TX2 
and an Intel i7 Motherboard

� adding braking and steering actuators in the cockpit along with their pneu-
matic circuits.

Figure 2.1: MMS team of 2018 at the Australasian Competition, Winton
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The Competition

Formula Student is the world’s largest engineering student design competition, with 
hundreds of teams competing from over a hundred countries and held in several loca-
tions around the world. Traditionally, the vehicles that competed used combustion 
engines. After that, the electric vehicle class was introduced. Since 2017, the FSD class 
was introduced in Germany at Formula Student Germany (FSG), which was the first 
country to host a driverless event and the first to set the rule book for this new class. The 
following year, Formula SAE Italy, Formula Electric Italy, Formula Student UK and 
Formula Student East also held similar competitions that involved driverless technology. 
MMS plans to compete in FSG in the year 2020, with the aim to complete all events. 
That is, successfully start and finish all dynamics events. This may seem like a light goal, 
but it is indeed quite difficult to finish all competition events even in the traditional 
electric and combustion class. In its first year, 2017, with 15 teams entering FSD, only 
one team managed to finish the trackdrive event. In its second year with 17 teams, only 
three cars finished the trackdrive event with others failing on early laps. The team that has 
stood out from the rest is AMZ Driverless (Zürich ETH), who started off winning and 
have only improved in performance year by year. The competition consists of static and 
dynamic events. The tracks which are known prior (see Fig. 3.1. and Fig. 3.2) to the 
competition include the acceleration track, which is a straight of 75m, and skidpad which 
has two tangential circles designed to test the car’s cornering ability. The car must 
recognise the stop area for both acceleration and skidpad events and come to a complete 
standstill to be successful. The autocross and trackdrive events are of interest because 
they require navigation through an unknown track autonomously. The track is marked out 
with yellow cones on the right and blue cones on the left. The trackdrive and autocross 
have identical closed-loop tracks (Fig. 3.3) that are unknown until the day at com-
petition. The circuit can have a layout that has any combination of straights, turns and 
hairpins. In the autocross event the car must navigate through this unknown track for the 
first time, while in the trackdrive event the vehicle must navigate a racing line and 
complete 10 laps of the same circuit to be successful.
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Figure 3.1: Acceleration Event

Figure 3.2: Skidpad Event
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Figure 3.3: Trackdrive and Autocross Event
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Literature Review

This project specifically is to aid in developing an autonomous race car for FSD, under the 
FSG rules. Therefore, most of the research performed is limited to what other driverless 
teams have done, and any papers they have released on this project. Observing what other 
teams that have come before Monash Motorsport have done with driverless technology 
gives an insightful overview for how the system should work. The analysis of some 
teams provides motivation for why the techniques discussed later in this report should 
be used, such as probabilistic data association (using the Mahalanobis distance) and 
a tool to aid in image labelling. Having a general overview of the hardware, cone 
detection and cone association algorithms used is useful for what MMS should aim 
towards.

A team from Norway, Revolve NTNU, used a LiDAR and a monoscopic camera [2]. 
The 3D points of the LiDAR are projected onto the image captured by the camera. 
Calibrating the two sensors requires knowledge of the relative position of the camera and 
LiDAR, which they determined using OpenCV functions to solve the projection 
problem. This is what MMS may consider in the future, as outlined in the Section
7.0.3: Future Work where camera cones and LiDAR cones get merged first before being 
processed by SLAM. This research paper suggested two methods which both require 
labelled training data for the machine learning algorithms. They calibrated LiDAR and 
Camera data using tools such as ROS Visualisation tool (RViz) for LiDAR and Geeqie for 
cameras, and then found a few distinct points in LiDAR data that are visually obvious in 
image data. They divided the task of labelling images across the whole team using the 
open source software, LabelImg, and suggested that a second person should check that all 
the frames and box positions are good enough to train the neural networks. Revolve also 
used YOLOv3, a neural network for camera cone detection. This team had a similar 
problem to MMS with the ZED stereo cameras when speed was increased, which led them 
to use a custom stereo camera setup with a global shutter. Revolve NTNU performed 
many tests with different neural networks and found YOLOv3 to be the best, which is 
what MMS is using.

The top team in this field of study is AMZ who have won all competitions that they have 
entered over 2 years and consistently release many helpful papers and other data which 
helps competing teams to gain traction in this difficult competition. AMZ use a higher 
resolution LiDAR than MMS, the Velodyne Puck Hi-Res while MMS use a VLP-16. The 
greater vertical resolution allows AMZ to detect cones using LiDAR at theoretically 4m 
further away than MMS (see Appendix A) given our cone detection technique. For camera 
cone detection, they developed a neural network that not only draws rectangular bounding 
boxes around a cone, but uses ‘edges’ at the 7 points that distinguish a cone, such as the 
top of the cone, or the colour transition from blue, to white, to blue again, or from yellow, 
to black, to yellow again [3]. This resulted
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in depth estimates from the PnP algorithm1 of up to 10m. Feature matching and 
triangulation using stereoscopic cameras to batch right and left bounding boxes used 
SIFT descriptors and brute-force matching. AMZ use FastSLAM 2.0, because the particle 
filter structure inherently allows for computationally efficient independent data 
associations. LiDAR and camera pipelines are treated independently, providing 
observations at different uncertainty models and different delays. The SLAM map is 
updated each time a new landmark is observed. AMZ use the Mahalanobis distance as a 
measure of likelihood with which to associate cone measurements.

Another team, KTH Formula Student from Sweden, explored different methods of object 
recognition and different data association methods for SLAM. They explored the 
Mahalanobis distance to compute individual compatibility and concluded that it is 
adequate because spurious landmark measurements rarely occur and the sensors they 
used have high accuracy [1]. Another method is joint compatibility branch and bound, 
which considers all measurements in one update, but computation require-ments increase 
up to two orders of magnitude. They tested SLAM algorithms but seem to have only 
tested on small closed loop tracks using about 32 cones. For sensor fusion between 
LiDAR and Cameras, they viewed LiDAR and camera information on the same 
visualization by restricting the FOV of the LiDAR.

1The PnP (Perspective-n-Point) is the problem of finding the pose of a camera in the world
frame given a set of n 3D points and their respective 2D image projections and known camera
parameters.

2More detail is provided on the topic of different latency and timing issues between camera and
LiDAR in Table 5.1 in Section 5.3
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Software

5.1 The Framework

The Robot Operating System (ROS) framework was used to run and test sensor 
integration with the SLAM system. This required including packages and libraries 
such as Eigen (which was coupled with Intel Math Kernel Library (MKL) ), and 
various standard sensor message types. The results and the track map from SLAM 
were displayed using RViz (ROS’s 3D visualisation tool) which depended on message 
types provided by the mms master customized ROS package. Using ROS, data 
was transferred between subsystems through ’topics’. ROS nodes (C++ programs) 
subscribe to or publish to these topics. The ROS bag utility was used to store all 
recorded data from sensors or any program output. A bag may contain multiple topics 
and their message types which are unique to the topic. Each message in a ROS bag is 
coupled with a timestamp so the data can be played back in the exact order and 
timespan it was recorded. LiDAR cone detection was done in the mms lidar node, 
and camera cone detection was done in the mms camera node. The output of these 
nodes were then independently processed by the SLAM node. GPS and INS messages 
from the raw bag data were also transferred straight to SLAM running in the Ubuntu 
Terminal.

5.2 Integration Overview

In 2018, the research and development phase of developing the driverless car, M19-D, 
began. This included the components such as sensors and computing units, and the 
introduction of new activities such as gathering data and testing cone detection 
algorithms on the data gathered. The autonomous system uses a single LiDAR and 
camera, however the vehicle could theoretically run with only one of them. The 
team made the decision to purchase both for redundancy and research. The data 
gathered included the point cloud from the LiDAR, stereo images from the camera, 
GPS signals and data from the IMU. This data is incredibly useful when incorporated 
into SLAM, the sensor fusion algorithm, which gives a better estimate of the overall 
position of the car and the position of the cones on the track.

5.2.1 Gathering Data

MMS achieved the collection of raw data by setting up a track in an unused car park 
using cones to demarcate the path. A ‘trolley’ was used with the sensors and computing 
box mounted, pictured in Fig. 5.1, as no driverless car was available at the time for team 
members to test with. The computing units and sensors were mounted on this trolley, 
which was then pushed around the track (see Fig. 5.2). The motion and vehicle dynamics 
of the trolley is completely different from an actual car, making IMU sensors unreliable 
and very noisy. This is due to the surface of the
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bitumen and having no suspension on the trolley. It was not physically possible for team 
members to push the trolley around at high accelerations and turning speeds that the real 
car would produce, so there were limitations in testing this aspect of the sensors. Dealing 
with sensors such as IMU which are noisy due to a test vehicle that is dissimilar to the 
motions of the real car was not ideal. However, sensor data from LiDAR, GPS and 
cameras were gathered reliably because their perception was not interfered by how the 
trolley moved. Later in the timeline at the beginning of 2019, the electric FSAE vehicle 
built by MMS was able to be used for driverless purposes since it had finished its last 
competition in December, at the Australasian FSAE Competition 2018. This vehicle was 
fitted with the sensors, computing box and actuators in 2019 to become M19-D, Monash 
Motorsport’s first driverless vehicle.

The cones used at the FSG competition (see Fig. 5.3) have black or white bands. 
Ideally, these would have been purchased from Germany and shipped to Australia, 
however this proved to be too costly. Therefore, the data gathered at testing is of 
cones that are pure yellow and pure blue. The implications of this is that the 
perception section is currently gathering data to train the neural network, YOLOv3, on 
generic blue and yellow cones without the black and white bands.

European project teams also exchange labelled data via a Github repository as the 
teams know that gathering and labelling camera data is extremely tedious and too time 
consuming given the yearly project timeline. MMS would like access to the database 
but the collaboration requires mandatory contribution of a minimum of 600 labelled 
mages of FSG cones which MMS does not have. Some teams have approached this 
issue by forming a partnership with a company that labels data professionally.

5.2.2 Testing

Gathering data using the trolley meant that the cone detection algorithms could be tested 
and GPS signals were recorded for later use in SLAM. At the time of this project, camera 
cone detection and stereo matching1 were not yet robust enough to be integrated into 
SLAM, so only LiDAR cone detection was used. Once the FSAE vehicle was ready in 
March 2019, testing was performed with one of the team’s drivers who drove around the 
track at high speeds, producing more accurate data from the cameras and IMU. This made 
it more realistic for testing software, such as cone detection algorithms and the SLAM 
algorithm. A setback became evident when the driver turned around corners at higher 
speeds (about 40km/h) and caused the rolling shutter from the camera to be evident, 
which affects how the neural network detects cones. This cannot be easily solved through 
software, as it is a phenomenon that occurs when the camera vibrates, such as when it is 
fixed to a car. A solution through software would require the motion of the car to be taken 
into account as the camera writes the pixel values. However, it is simply easier to acquire 
a camera that has a global shutter.

When the car is turning, the cones in the camera image are skewed as seen in

1Stereo matching is the process of forming a 3D construction from 2 sets of images. Another 
team member is working on improving robustness and computation time, as this requires a GPU 
which the Author does not have.
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Figure 5.1: Testing trolley with
mounted sensors and computing
box

Figure 5.2: Data was gathered by
pushing a trolley around a track

Figure 5.3: Cones types at the FSG competition

Figure 5.4: Cone skew due to rolling shutter

Fig. 5.4. This figure shows a blue cone in shadow that is captured but appears 
asymmetric about the vertical axis. Note that the ghost shown in this image is not seen 
by the neural network, it is only included for visual analysis of the stereoscopic camera.

After raw LiDAR data and camera data was gathered, these are then put through 
their respective cone detection algorithms. The output of these algorithms provide 
cone locations and cone types to the SLAM algorithm in real time. So far, only 
LiDAR cone detection works when integrated into SLAM, implemented by another
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FYP student. Testing of the SLAM algorithm and the integration of GPS and IMU can 
be done on any computer that has Linux, all the required ROS packages and math 
libraries installed. Testing of the camera cone detection neural network re-quired a 
computer which has a GPU to perform the parallel processes that real-time image 
processing requires. The cone outputs would then be stored in a bag which can be 
run on a regular computer to test integration with the SLAM algorithm. In general, 10 
minutes of recorded stereoscopic camera data uses about 210GB while other sensors 
such as LiDAR and GPS/INS inclusive use only 3GB over the same interval. These 
two requirements of a computer with a GPU and a lot of storage space encumbered 
camera integration, as the team only has access to 2 devices that met these 
requirements: the computer mounted on the car and a team member’s personal 
desktop.
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5.3 Sensor Fusion

The cone detection outputs are passed on to a SLAM algorithm, which is a form of sensor 
fusion. SLAM itself is a generic term for a class of algorithms that may differ depending 
on the type of mapping and the scope required for a particular use case. In this case, the 
SLAM method was based on the Extended Kalman Filter (EKF). The EKF is simply a 
Kalman Filter that has been extended to non-linear systems using a Jacobian. The general 
overview of how a SLAM algorithm works is by using a combination of dead reckoning 
and perception sensors to improve the accuracy of the position and heading of a robot or 
vehicle. A simple SLAM system may take odometry readings and sensor data from a 
laser scanner, which detects the distance of the surrounding objects. Each time the vehicle 
moves, the algorithm will predict where the objects will be in the current time step and 
compare this to the actual measured distances. This comparison means taking the 
difference between predicted cone position and measured cone position, otherwise known 
as the innovation. The algorithm keeps track of every object seen and the vehicle’s 
position (and derivatives) in a state vector, and their relations in a covariance 
matrix. The state vector contains the pose of the vehicle and the cone locations, 
while the covariance matrix holds the uncertainties of the state variables in relation 
to each other. Generally, the school of thought is that adding more sensors will 
provide more information about the environment, thus making the SLAM system 
more accurate. One aspect of the mapping component of SLAM is the data association 
method, which is used to determine if a newly measured object is the same as what is 
already in the state, or if it should be appended to the state. A key term in SLAM is 
loop closure, which is when the vehicle recognises an environment that it has seen before 
by the position of the cones, the type of cones, and the vehicle’s current position. 
Loop closure is useful for gaining certainty of position and understanding the start 
and stop line in SLAM for the trackdrive event. The sensor fusion aspects discussed 
here is the addition of GPS measurements into the SLAM system.

Sensor fusion itself is a broad topic. The term could refer to fusion on various levels 
including fusion of features and decisions [4]. The type of sensor fusion relevant to 
this report is

� cross sensor fusion, where the sensor measurements involve the same physical

objects, such as LiDAR and stereoscopic cameras measuring the position 
of cones

� cross attributes fusion, where sensors measure different qualities across the
same situation

These types of fusion will contribute to receiving an input, detecting features, and 
making a decision to feed to the next block in the pipeline: path planning and 
motion control. A full system diagram is shown in Fig 5.5.

The LiDAR and stereoscopic camera in this case are complementary, because the sensors 
do not directly depend on each other, but can be combined to provide more accurate cone 
locations. They each offer different attributes outlined in Table 5.1. Together, they 
compensate for each other’s weaknesses to create a perception system that builds a more 
complete and robust environment. The LiDAR and stereoscopic camera sensors have a 
cooperative configuration with GPS/INS and

12
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wheel speed sensors which are fused in SLAM to provide more accurate data about 
vehicle location and cone location.

Figure 5.5: Full perception system flow diagram

Table 5.1: LiDAR v Camera

LiDAR Stereoscopic Camera
Colour Can see colour of cones but to a limited

extent, and would need a higher vertical
resolution to draw useful conclusions

Can see colour of cones

FOV Larger horizontal FOV, with 360deg
FOV but once mounted on the car is
limited to 240deg, which is better for
hairpin corners.

Cameras are only forward facing, with
70deg FOV

Weather
conditions

Not susceptible to weather conditions,
lighting conditions, (rain, overcast,
sunny)

Detection algorithm must be trained on
data that has a wide range of weather
and lighting conditions (rain, overcast,
sunny)

Latency A LiDAR sweep is every 100ms, cone 
in-formation message is published 5ms
af-ter this

Frame rate is 30 FPS, cone information
message is published 20ms after this.

Number of
objects

LiDAR produces 1 cone at a time as
detection is done as the LiDAR sweeps.

Cameras may detect any number of
cones from an image.

Distance Detect a cone at 5-10m, limited by ver-
tical resolution

Distance: Neural network can detect a
cone and feed to stereo matching for
cones 15-20m away

13
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5.3.1 Adding GPS into SLAM

After EKF SLAM was working in C++ purely using LiDAR cone detection, sensor inputs 
from GPS needed to be included. The motivation for using GPS is to reduce the 
uncertainty of the vehicle’s position, which in turn reduces the uncertainty of cone 
positions in the world coordinate frame. The GPS system produces centimetre accurate 
results due to a base station and RTK (real time kinematics). Running EFK SLAM solely 
on LiDAR cone detection exhibited some drift of about 2-3 meters by the time the car 
‘closed the loop’ after it had driven through the circuit and returned to the starting 
position. While existing MATLAB code from a previous FYP student provided 
calibration of the GPS and integration into its own EKF, it lacked any methods to 
combine the coordinate frames which were different for GPS and the global frame.

There are two cartesian coordinate frames that are relevant when fusing the GPS 
sensor with SLAM.

1. the ‘world’ coordinate frame, which is the ground-truth frame that doesn’t 
change. When SLAM is initialised, this and the vehicle frame are initialized 
such that the positive x-direction of the frame is the vehicle’s initial forward 
heading.

2. the ’GPS’ coordinate frame, which is also initialised to the same position as 
the ’world’ and ’vehicle’ coordinate frames, however the relative rotation 
between them is unknown. The X and Y axis represent longitude and latitude 
respectively. The positive x-direction of the GPS frame is always in the easterly 
direction.

Before GPS can be integrated, the car location in the GPS frame must be rotated by an 
angle αgps to match the car location in the SLAM frame. If the car is heading east, given 
the GPS positive x-direction is east, then the measurements agree. However, the rotation 
of points is required if the car is heading in any other direction, such as north-west, while 
the positive x-direction of GPS remains pointing towards east. To solve this problem, the 
GPS frame is initially assumed to coincide with the SLAM frame. Now the SLAM frame 
will have the car position at one point, while the GPS will likely measure the car to be at 
another point. The angle between two vectors is calculated, where one vector is of the x 
and y coordinates of the car’s position in the SLAM frame, and the second vector is the x 
and y coordinates of the car’s position in the GPS frame. The angle between the two 
vectors is calculated from the x and y coordinates of the car from the SLAM frame (xstate, 
ystate) and the GPS frame (xgps, ygps).

α = cos−1 xstatexgps + ystateygps
|xstate, ystate|.|xgps, ygps|

Before calculating α, SLAM must wait for the vehicle to move a certain distance away 
from the origin before attempting to integrate GPS. This is so that the angle of the vector 
of the car’s position in the SLAM and GPS frame can be calculated with respect to the 
origin and any noise in the GPS measurement or SLAM estimation doesn’t cause wildly 
varying angles at small distances.
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To ensure that the correct sign of the angle is applied to the rotation, the sign of the angle 
is reversed when the cross product is greater than zero. This is to ensure that this method 
works on different tracks that may start a westerly heading direction, which would be 
opposite to the GPS’s heading direction.

cross product = xstateygps − ystatexgps

The angle αslam,i with which to rotate the car from the GPS frame to the SLAM frame is 
calculated using a weighting. This weighting is between previous angles αslam,i−1 
calculated and the current angle α calculated and n is the number of times a GPS 
measurement has been received. This behaves in the same way as storing all previous 
estimations of the relative frame angle and averaging them. This is reasonable as the 
angle is a fixed constant once SLAM is initialized.

αgps,i = αgps,i−1(
n

n+ 1
) + α(

1

n+ 1
)

Finally, the GPS x and y coordinates are calculated from rotating the original 
xgps, ygps by the new GPS frame angle.

[
xrotated
yrotated

]
=

[
cos(αgps,i) −sin(αgps,i)
sin(αgps,i) cos(αgps,i)

] [
xgps
ygps

]
The SLAM algorithm may exhibit some accumulated error when using only LiDAR for 
the update step, shown in Fig. 5.6. The integration of GPS results in the large orange 
start cones being seen in almost exactly the same position as they were first seen, shown 
in Fig. 5.7, which means the end result is more accurate. This can potentially aid in loop 
closure when the car is travelling at a faster pace and the INS can not accurately provide 
measurements to help predict the vehicle position.
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Figure 5.6: SLAM without GPS

Figure 5.7: SLAM with GPS
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5.3.2 Adding IMU into SLAM

The Inertial Measurement Unit (IMU) consists of accelerometer, magnetometer and 
gyroscope. These sensors provide information about the motions of the vehicle such as 
the rate of turning around a corner and acceleration. In order to integrate IMU, the EKF 
SLAM code had to be changed to accommodate eight state variables along with other 
system variables. The state matrix is an n × 1 matrix that contains the pose of the vehicle 
and the positions of all landmarks. The pose of the vehicle was expanded to include yaw 
rate θ̇, acceleration ẍ, and acceleration ÿ. The 8 states variables are

x, y, θ

ẋ, ẏ, θ̇
ẍ, ÿ

IMU integration is a ‘double edged sword’ in that it comes with the benefits of frequent 
sensor inputs, but this also consumes processing time and power, which slows down the 
overall computation of SLAM. IMU is the fastest sensor integrated with SLAM, capable 
of providing measurements at 200Hz, while other sensors are typically 30Hz. Including 
the IMU is computationally expensive, requiring large calculations of the covariance 
matrix at each update. With the computing power available, the only way to integrate 
IMU without SLAM failing was to subsample by an empirically determined factor of 8, 
beyond this point SLAM could no longer complete all the required computations to 
ensure no data was lost. At the time of this project, the IMU mounted to the testing trolley 
was noisy due to the trolley vibrations on the rough surface of the bitumen in the carpark, 
and any cornering did not produce clean enough2 acceleration values to be useful in 
SLAM. The accel-eration magnitudes are much greater in a vehicle being driven (Fig. 
5.8) compared to the trolley (Fig 5.9). This figure shows noisy IMU on the trolley while 
the trol-ley was being pushed slowly straight ahead from a starting position. This meant 
that the data was more useful to analyse and develop algorithms for. However, the IMU 
sensor itself has still proven to be noisy so the measurements aren’t as heavily weighted 
by the SLAM algorithm as other sensor inputs or the control input. The SLAM algorithm 
’trusts’ (weights more) the information provided by a sensor mea-surement based on the 
noise covariance that the programmer provides. For instance, if there is a sensor that is 
noisier than others, then its noise covariance values are increased by the programmer, so 
SLAM won’t allow the sensor to heavily influence the state. The programmer would 
obtain these numbers through empirical testing the accuracy and repeatability of a sensor. 
If a sensor is not ‘trusted’ it means the sensor’s input does not weigh heavily in SLAM’s 
update step.

2After March 2019, when the electric vehicle could be used, the sensors were mounted and
another team member successfully integrated IMU and gyroscope into SLAM.

17



Siriluck Ovenden Final Year Project Report 2019

Figure 5.8: IMU data from vehicle has higher accelerations and is less noisy than
trolley.

Figure 5.9: IMU data from trolley
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5.3.3 Probabilistic data association

Data association in SLAM involves cone detection and the addition of new cones 
into the SLAM state. Data association is the process of making the decision to either 
update an existing cone based on a new measurement or add a new cone to the state 
from the new measurement. Data association is the process that adds a new cone to 
the track. Before this FYP, data association was done based on the Euclidean 
distance: if the measured cone position is too far away from any other cone in the 
state, then append the measured cone to the state. If the measured cone position is 
close enough to a cone that is already in the state, then they are deemed to be 
associated. The existing cone in the state is updated using the new measurement. 
Implementing probabilistic data association allows SLAM to take into account the 
existing cone's certainty3 from the covariance matrix and compare it with the measured 
cone’s certainty which is based on the vehicle and measurement’s certainty. That is, if 
the vehicle’s position is uncertain, then the measured cone’s position must be even 
more uncertain. The motivation for replacing Euclidean distance with the 
Mahalanobis distance is to prevent false positives, to more accurately combine cones 
that are seen twice after loop closure, and to distinguish cones that are placed side by 
side. The scenario of when cones are placed side-by-side occurs at the starting 
position of the track drive and autocross event. A covariance of each cone location 
is kept in the EKF SLAM covariance matrix, which provides information about the 
certainty of a cone position in the SLAM frame.

A simple comparison of the Euclidean distance to the Mahalanobis distance given using 
Fig. 5.10 and Fig. 5.11 and Table 5.2. The figures show the blue cones with their 
respective covariance ellipses circled around them.

Table 5.2: Are A and B the same cone?

Fig. 5.10 Fig. 5.11
Euclidean Yes Yes
Mahalanobis Yes No

Figure 5.10: Cones with overlap-
ping covariance

Figure 5.11: Cones with separate
covariance

3What is meant by ‘certainty’ here is the 2x2 covariance matrix of the cone’s x and y position.
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The implementation of the Mahalanobis distance calculation is a statistical approx-
imation, as more specific calculations require too much computation and time for
it to be a feasible real-time solution. Σpooled is the combination of the covariance of
the cone from the state and the covariance of the measured cone.

[
dx
dy

]
=

[
xstate
ystate

]
−
[
xcone
ycone

]

Σpooled =
1

2
(Σstate + Σmeas)

Mahalanobis distance:

D2 =

[
dx
dy

]T
Σpooled

[
dx
dy

]
A cone is then combined into the state if its Mahalanobis distance is within a
threshold to an existing cone. Otherwise, it is added to the state as a new cone.

Figure 5.12: SLAM using Euclidean Distance.
This shows the map created by SLAM before using the Mahalanobis distance.
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Figure 5.13: SLAM using Mahalanobis Distance.
This shows the map created by SLAM after using Mahalanobis distance. It can be
seen that the two start cones (see Fig. 5.14) are no longer associated as one cone.

Figure 5.14: FSG screenshot from live stream. The big orange cones are placed next
to each other after the starting position
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5.4 Camera Cones Annotation

Camera-cone detection in MMS’s system is very jittery and inaccurate, which affects 
stereo-matching and therefore the placement and distance of the cones when input into 
the SLAM algorithm, as shown in Fig. 5.15. The mms camera node performs isolated 
stereo matching on regions of the image detected as a cone, and constructs a set of cone 
positions on a 2D map. This map viewed from the vehicle’s point of view is shown in 
Fig. 5.16.

Figure 5.15: Camera cone detection output

Figure 5.16: Cone position as a result of camera cone detection

It can be seen in Fig. 5.15 that the placement of the bounding boxes around the 
cones does not match the cone’s in the image very well. What may have contributed to 
this inaccurate matching is the neural network (NN) has not been trained on 
enough data. It has only been trained on 300 images, while other teams have trained 
their neural networks on tens of thousands of images. Some teams claim to have 
45,000 images labelled4, typically by sponsors or otherwise outsourcing this service. 
When this cone detection output is provided to SLAM, the positions of the cones 
keep changing, and some of this can be attributed to non-robust stereo matching. 
Another disadvantage is that the cones MMS have access to, are not the same as

4 Revolve NTNU Facebook page, ‘Reveal 2019’ video
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those used at FSG. This difference in the types of cones detected can affect how the 
neural network performs when faced with FSG cones. While we are training our data 
with artificially augmented cones to develop a robust neural network, we cannot know 
the actual performance when our system sees the actual competition cones.

To make the process of labelling images easier, a tool was implemented to be used 
alongside the existing LabelImg software. LabelImg is an open source image la-
belling tool that can output labelled image data in the YOLO format and PASCAL 
VOC format. Labelling images is a tedious and time-consuming activity for the 
Autonomous members of the team. A tool was developed which utilized OpenCV’s 
template matching function to extract multiple cone positions from an image based on 
a template of a cone. The original code only returned one instance of a region in the 
target image which best matched with the template. This program was com-piled and 
included in a fork of the LabelImg repository. This open source software code was 
transformed to include a button for the user that executes the template matching C++ 
code. The progression of the code development can be seen from Fig. 5.17 to Fig. 
5.18 to Fig. 5.19 and eventually to Fig. 5.20.

Figure 5.17: Off the shelf Template Matching

Originally, the intention of the program was to draw bounding boxes around cones using 
fixed templates to minimise user input and maximise automation. However, it only 
works when the template is very similar to those regions present in the image. This 
resulted in the merge of the C++ program for cone detection with the LabelImg program 
to have an easy interface for the user to add a template. At the click of the button “Add 
Template”, all other similar cones are labelled. To detect more distant cones in the image, 
the template size had to be changed from large to small so that the template matching 
worked properly. To minimise false positives, the hue value of the middle pixel of the 
template must be close enough to the hue of the middle of the matched regions.

If one general template is used for all images, template matching fails because the 
lighting conditions are different. Although they may be the same hue, the resulting image 
is completely different and contains incorrect boxes and many false positives, as seen in 
Fig. 5.21 when using the template from the previous image, 5.22. The
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Figure 5.18: Off the shelf Template Matching

Figure 5.19: Template Matching of different sized objects

template does not resemble the cones in the target image well enough, as the tem-
plate is in full sunlight while the cones in the target image are in shadow. This is 
the reason for including the ability for the user to add a template. The template 
drawn in the current image matches the lighting conditions in which the cones were 
captured.

The limitations of this is solution is it does not work well for very distant cones, 
which look too blurry as shown in Fig. 5.23 to be matched well using a template. 
Hence, the distant cones would have to be drawn in manually using the LabelImg 
tool. Even if the user added another template by drawing one around the small 
blue cones, the template matching algorithm will likely pick up many false positives 
because the blue colour is so similar to the grey bitumen. In addition, the cone in 
the template might have white background lines from the car park while other cones do 
not, which would further interfere with the template matching algorithm.
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Figure 5.20: Modified LabelImg program

Figure 5.21: Template Matching, with false positives

Figure 5.22: Bright yellow cone template

Other methods apart from template matching were explored, such as using flood-fill 
methods and HSV methods. However, these methods proved to be too sensitive to
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different shading and lighting conditions, because it would be difficult to set a good 
threshold value for each new image from different days of testing. HSV and flood-fill can 
also be sensitive when the blue colour blends in too much in the bitumen on a cloudy day, 
or when a yellow cone blends in with a white background line of the car park. These 
experiments are shown in Fig. 5.24, and Fig. 5.25 where orange and yellow cones cannot 
be easily distinguished from each other. Flood-fill also failed on a dark day where blue 
cones blended in with the bitumen and on sunny days where the yellow cones blended 
with the painted white lines. The threshold values for both methods were not robust under 
different lighting conditions. HSV was implemented in such a way to guard against false 
positives for the main template matching algorithm.

Figure 5.23: Distant blue cones do not get matched very well

Figure 5.24: Exploring Flood-Fill
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Figure 5.25: Exploring HSV
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Discussion

As part of the Autonomous section, this FYP contributed to the perception systems for 
M19-D; the driverless FSAE vehicle. The GPS has been successfully integrated into 
LiDAR-based SLAM. The drift in the SLAM system due to the summation of error over 
each measurement and distance travelled has been corrected by the integration of GPS. 
The SLAM system also has more accurately determined cone positions by using the 
Mahalanobis distance as the data association method without sacrificing noticeable 
computational power. Team members can use camera anno-tation software to quickly 
annotate images containing cones from data gathered at testing. The tool has been 
integrated with an already existing and popular tool, LabelImg. The template matching 
tool is therefore easy to use and improves effi-ciency. The customised camera annotation 
software has limitations in that it can have false positives which need to be deleted and it 
requires manual editing if the algorithm could not detect all cones. False positives may 
occur due to the distance of a cone or different shadowing present in the testing area, in 
which case the user can easily delete them. As Monash Motorsport's driverless 
package continues to be developed, this FYP provides a foundation for current and 
prospective Perception Engineers working on future vehicles. 
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Miscellaneous

This is other work that was contributed to the Monash Motorsport team. The 
LiDAR mount is designed to be robust and protect the LiDAR from cone hits 
while the car travels at high speeds. The manufacturing of this was the Author’s 
responsibility. Research was also done into FastSLAM which may provide some help 
for future implementation.

7.0.1 LiDAR Mount

Fig. 7.1 shows the LiDAR mount highlighted in orange, which sits at the front of 
M19-D, and the grey object underneath are the jigs which were designed for the 
purpose of manufacturing. The full document of how the mount was made is 
documented on the MMS internal Wikipedia. The resulting product can be seen in 
Fig. 7.2.

Thank you to all those who welded these parts for me and provided advice: Filip 
Surla, James Murray, Reece Day, Lachlan Hore, Aryaman Pandav, George Lloyd, 
Will Harding, Paul Hendy, Leon Shi, Justin Green and others.

Figure 7.1: LiDAR Mount
LiDAR Mount (orange) and manufacturing jigs (grey) in Computer Aided

Design (CAD)
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Figure 7.2: LiDAR Mount final product
Finished LiDAR mount on M19-D, when M19-D was driven manually before

autonomous actuators were implemented.

7.0.2 LiDAR Cage

The LiDAR Cage protects the LiDAR while it is mounted on the car but not in use. 
The nature of the workshop where M19-D is built, tested and maintained involves 
people moving around. Since the LiDAR is mounted low to the ground, there 
was a risk of people hitting it with their boots or dropping tools on the expensive 
sensor.

(a) LiDAR Cage
(b) LiDAR Cage welded, before
sand blasting and painting

7.0.3 FastSLAM

The initial plan was to implement FastSLAM, but because EKF was working suc-
cessfully with LiDAR, the team pushed forward to integrate everything else to get the 
driverless system up and running as soon as possible. This significantly re-duced the 
amount of time dedicated to working on FastSLAM and thus it never reached the 
development stage. The following summary may prove useful for future development:

The initial goal is to get a small system to work first, with a small number of particles on 
your preferred programming language that includes an IDE that is viable for easy 
visualisation. Without seeing the program run on a 2D map with vehicle pose and cone 
location, there is no evidence that your algorithm works. An overview of the
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FastSLAM algorithm is described by the flow diagram in Fig. 7.4.

How the FastSLAM algorithm works: Begin by defining a FastSLAM class which uses 
the Particle class. Each particle contains the pose of the vehicle, landmark positions and 
their covariances (2x2 EKF). Each particle represents one path and one map. Each 
particle is ”certain” they know exactly where they are. The Particle class is responsible 
for these operations:

� Calculates vehicle pose given the landmarks seen and given the control input.
Hypotheses are made on the motion model, which can be non-linear and non-
gaussian.

� Calculates the EKF of each landmark, new information is used to update
the PDF (probability distribution function) of the car pose and to decrease 
uncertainty.

� Computes the likelihood of each landmark being correlated to a landmark that
has already been seen.

� The correlation could be done using a minimum mean square algorithm.
� If not enough correlation, a new instance of a landmark is created.

� If a landmark has been seen before, then its correspondence gets updated to
a new value.

The FastSLAM class is responsible for these operations:
� Predicts where each particle will be, given the control inputs (movement,

odometry)

� Each particle is updated with a new weight given how much ”what is seen”
matches what was ”predicted to be seen”.

� The particle is given a new ’weight’ or gets decommissioned if it’s unlikely
that that particle represents the true state of the world. The weight of the 
particles is determined by two sources of uncertainty: the sensor and the 
estimate (motion model)

� Each particle belongs in a pool of samples that all get given a ’weight’ 
depending on how likely it is to be true given the control input and the 
observation.
� The weights are normalized, i.e. distributed to sum to one.
� Particles get resampled in the next time step according to their weights.
� Resampling should only be done if the car has moved, or new measurements 
have come into play to avoid particle deprivation.
� A map of each resampled particle is updated using a standard EKF. But sensor

noise must be white, zero-mean and gaussian, and the observation mode is 
linearized.

Loop Closure can be aided by the fact that big orange cones will be placed before and 
after the start, finish and timekeeping lines. FastSLAM will be difficult to
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implement because of all the parameters that must be tuned, such as the number of 
particles used, noise variables and FastSLAM will require more computation. It is 
worth for future Autonomous Systems members to look further into this. 

Figure 7.4: FastSLAM algorithm
The green blocks represent functions that are called for each particle. The blue

blocks represent the FastSLAM algorithm itself with the predict, correct and
resample steps. The pink blocks represent incoming information while the

algorithm is active.

32



Siriluck Ovenden Final Year Project Report 2019

Future Work

These suggestions for future work for Monash Motorsport are from the perspective of 
other people who are involved in the Autonomous Perception section. The sug-gestions 
include looking into different SLAM algorithms to make sensor fusion faster in real time 
and looking into simulation methods so that perception algorithms can be more easily 
tested. The suggestions are as follows:

� Other SLAM algorithms
– Particle-based filters such as FastSLAM because it may be more robust

than the Extended Kalman Filter SLAM. Particle filters are appropri-ate for 
when the vehicle faces hard data association problems, where the vehicle can 
be globally uncertain and might choose from a number of hypotheses about 
where it could be in the environment. FastSLAM adds computational 
complexity and it is more difficult to develop. How-ever, with EKF SLAM 
implemented, this can be used to develop Fast-SLAM which consists of many 
small EKF calculations. The downsides of fastSLAM are potential lack of 
diversity in particles if there is not enough noise in the system to diversify 
them, or this can be done artifi-cially. Particle deprivation can be avoided as 
well as decreasing required computations by only resampling when the car is 
moving, or when a new observation has been made. Low-variance sampling 
can also help with particle deprivation, where if all samples have the same 
importance weight, no samples are lost. FastSLAM still has a higher 
computational requirement than EKF.

– Modular EKFs which involve stitching of smaller EKFs, so that EKF
does not have to do a full update when it is reaching the end of the track in 
which case it might have stored 300 landmarks. The full update can be slow 
and ROS messages occasionally get missed upon loop closure, especially 
when there are high frequency sensors such as IMU which pro-vide data at 
200Hz. A modular EKF design that only updates the most recent section of 
the map until it is filled with a specific number of cones before ‘starting new’ 
at the next set of cones. When the big orange start cones are seen again, EKF 
may then perform loop closure.

– Unscented Kalman Filter which has more complexity and harder imple-
mentation but is better for non-linear functions like the one the driverless car 
has.

– Sparse Information EKF using sparse matrices, which can be exploited
for better computation time at the expense of landmark accuracy.

In any case, the next implementation should try to use matrix decompositions and 
avoid doing matrix inverses because these are slow. MMS could implement one 
type of SLAM for the discovery lap, and another type of SLAM after loop 
closure that is purely for localisation instead of the current EKF, however, this 
poses no issues at the moment.

� Improve cone annotation algorithm for faster computations. One method to 
implement is to exploit the fact that smaller cones will be more distant, so they
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will only appear in the pixels in the upper half of the image. The template 
matching could therefore be optimized by only applying matching of smaller 
templates in the pixels above where the last, largest template was matched.

� Integrate wheel speed sensors along with a motion model into SLAM. That is,
if a wheel speed sensor reports zero, it does not mean that the car is stationary but 
rather the wheels a locked up due to the breaking actuator and the car still moves a 
significant distance which should be accounted for in SLAM. The model that 
includes wheel speed sensors therefore needs to take into account the history of the 
motion of the car and take into account wheel slip.

� Integration of cameras and LiDAR such that they don’t both feed cone infor-
mation to the EKF, but decide on cone position together on a separate node 
before crowding the EKF with updates. A Kalman Filter or other sensor fu-
sion technique should be used to combine cone information from camera and 
LiDAR and produce a certain result. However, this may not produce real time 
results because the camera has a lot of latency while the LiDAR does not.

� Implement and design more visual debugging methods such as having a sepa-
rate window that displays the EKF covariance matrix where you can see how it 
updates with each sensor input.

� The noise parameters in EKF SLAM have been tuned to work, so that SLAM
does not break. So far, it has been difficult for the team to use its available 
resources (team member time and testing venue availability) to do tests that will 
properly quantify GPS noise and drift, and IMU noise and drift. This would be 
especially useful as the testing vehicle can now actually accelerate unlike the 
testing trolley that was used in the early onset of this project.

� AMZ verified their car motion model by calculating velocities and comparing
them to the IMU’s measurement values. Verifications like these would be good to 
have.

� Experiment to quantify noise on positioning sensors by running SLAM based 
on dead reckoning alone, hence, no perception updates.
� Getting better cameras that reduce or eliminate rolling shutter and can handle the 
large vibrations that occur during a fast drive of the vehicle.
� Better and more stable stereo matching algorithm, which depends on team 
members having access to the necessary and expensive computing units.
� Implement easier platform for testing and simulation: Install a few dedicated

office computers for the Autonomous section that have all the necessary hard-ware 
to run modular simulations of a detection system, and full simulations as if the car 
was on track with all included vehicle dynamics, all equipped with GPUs to handle 
stereo camera outputs.

� It is suggested that MMS moves towards a heavily simulated framework to test 
software, and reserve physical vehicle testing for actuation control. One useful aspect 
may be to create random track generation with all the parameters de-fined in the rules 
such as no longer than 80m straights, constant turns less than 50m diameter, hairpin 
turns greater than 9m outside diameter, chicanes, de-

34



Siriluck Ovenden Final Year Project Report 2019

creasing radius turns, etc. A full final-year-project could be dedicated to this. The 
methods previously suggested in meetings with the supervisor include

– Start with a circular track and then randomly deform it, eg. apply Gaus-
sian filters to push corners in and other corners out.

– Use Fourier descriptors by regarding each x, y point of the track as x+iy,
add harmonics to deform the circle into an ellipse and add other shapes.
By limiting the number of harmonics, you limit sharp corners.

– Using GANs (generative adversarial network) to create fake tracks.
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7.1 Supporting Resources

Camera Annotating, C++ code https://bitbucket.org/geosov/camera_annotating/SLAM, C++ 

Code https://bitbucket.org/mms-driverless/mms_slam/master/

Editions to LabelImg, Python code https://bitbucket.org/geosov/labelimg_ auto/

Video Link: www.youtube.com
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Appendix

The vertical resolution of the LiDAR matters because a better resolution means we can 
detect cones at a greater distance, which will ultimately allow the vehicle to make 
decisions faster about a racing line.

Realistically the LiDAR might detect cones from a position above the ground (see Fig. 
8.1) because it is mounted as such on the car. The LiDAR mount was specif-ically 
designed to hold the LiDAR such that its centre is at half the height of the cones. The 
figure below is the ideal case where the LiDAR will detect a cone at the maximum 
distance that it can achieve.

Figure 8.1: Actual height of LiDAR as it detects cones

Calculations using trigonometry will achieve the same result if the calculations are 
done by pretending that the LiDAR is actually at ground level, as shown in Fig. 
8.2.

Figure 8.2: Image to aid calculation of distance given vertical resolution

Velodyne Puck Hi-Res2 Velodyne VLP-16
Vertical resolution: 1.33° 2°

Maximum Cone detection distance achieved: 14m 9.3m

Velodyne Puck Hi-Res can theoretically detect cones at a distance of 4.7m further 
than the VLP-16.
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