

Perception Integration for an Autonomous Vehicle

Siriluck Ovenden

Final Year Project: 2018 Semester 2 – 2019 Semester 1

Department of Electrical and Computer Systems Engineering,
Monash University

Supervisor: Professor Tom Drummond

May 22, 2019

Significant Contributions

� Interfaced with LiDAR sensor data: extracted information from LiDAR packet,
created ROS node to subscribe from LiDAR sensor and publish to SLAM.

� Integrated GPS measurements into SLAM.

� Implemented an approximation of the Mahalanobis distance into SLAM.

� Tested and tuned noise parameters in the EKF.

� Automated existing cone detection labeller using template matching to aid
labelling efficiency and further tune the neural network.

� Miscellaneous:

– Designed LiDAR Mount welding jigs in NX12 CAD program

– Manufactured LiDAR mount for M19-D

– Researched FastSLAM

1

ECE4095 Final Year Project 2019

Department of Electrical and

Computer Systems Engineering

Perception Integration for an

Autonomous Vehicle

Siriluck Ovenden

Supervisor: Professor Tom Drummond

Project Aim
To integrate data from various sensors on an autonomous racing

vehicle in real time and improve sensor data acquisition. Data from

various sensors such as LiDAR, stereoscopic cameras, GPS and

IMU are to be integrated into an EKF SLAM algorithm to provide car

and obstacle location to feed to path planning and motion control.

Probabilistic Data Association
Improved SLAM by using the Mahalanobis distance which

takes into account the uncertainty with which a cone was

detected before adding it into the SLAM system.

Image Labeling Tool
Prior to this project, a neural network was used to detect

cones but had not been trained on enough data, so a tool

was implemented to aid labeling of images. This involved
adjusting and adding code to already existing open source

software. Using template matching in OpenCV to

detect and label cones decreasing tedious data labeling
which is required to train a neural network.

Monash Motorsport

Monash Motorsport is a student run team that builds,

develops and designs FSAE race cars. The Autonomous
Section is responsible for much of the software and hardware

that goes into making a Formula Student Driverless car.

GPS integration
With the already existing EKF SLAM (Simultaneous

Localisation and Mapping) implementation using LiDAR, the

next step was to integrate other sensor data to provide the

vehicle with more certainty of its position and the cone

locations which mark out the track. This was done on Ubuntu

Linux operating system, using C++ and ROS framework for

program communication.

Add Template

Executive Summary

Formula Student is a competition for university students to build and design race cars.
Monash Motorsport plans to compete in all three classes in 2019: electric, combustion
and driverless. The driverless class involves an autonomous car fitted with sensors,
computing units and actuators. As part of Monash Motorsport’s Autonomous Section,
this project contributed to the integration of perception and Simultaneous Localisation
and Mapping aspects of the autonomous vehicle. This project also implemented the
integration of GPS measurements into the EKF SLAM algorithm to increase certainty of
the car’s position. The accuracy of the vehicle’s position contributes to the accuracy of
the map created by SLAM based on detected cones which mark out a track. Probabilistic
data association was also implemented using the Mahalanobis distance, which increased
the accuracy of the track map produced by the SLAM algorithm. Integrating stereo-
scopic cameras into SLAM proved to be difficult, as the neural network used for
detecting camera cones required more training data. This project also details the custom
implementation of an auxiliary program to aid in image labelling to further train the
neural network in the future.

3

Acknowledgements

The following list of people and many others contributed and guided me through
making this project possible.

� Bryce Ferenczi - for being an excellent academic and critical thinker

� Michael Mattiske - for implementing a working EKF SLAM using LiDAR

� James Wyatt - for your love of solving problems

� Jack Coleman - for being all-knowing about cameras and neural networks

� Shreya Ramesh – for your work on GPS and IMU

� Dr. Titus Tang - for always providing enthusiasm and mentorship
Special thanks to my supervisor, Professor Tom Drummond, for providing excellent
advice and wisdom to the Autonomous Section. I fondly owe my gratitude to everyone
on the Monash Motorsport team who make M19-D testing possible, were supportive of
the new Autonomous Section and who provided me with advice during the design and
manufacturing period. I would like to mention my gratitude to the Autonomous Chief
Engineer, Aryaman Pandav, for his dedicated hard work and for being a great mentor
and friend. It has been an honour to be part of one of the highest performing teams in the
world and have the privilege of developing the first driverless FSAE vehicle in Australia.

4

Siriluck Ovenden Final Year Project Report 2019

Contents

1 Significant Contributions 1

2 Executive Summary 3

3 Acknowledgements 4

4 Introduction and Motivation 1

2 The Team 2

3 The Competition 3

4 Literature Review 6

5 Software 8
5.1 The Framework . 8
5.2 Integration Overview . 8

5.2.1 Gathering Data . 8
5.2.2 Testing . 9

5.3 Sensor Fusion . 12
5.3.1 Adding GPS into SLAM . 14
5.3.2 Adding IMU into SLAM . 17
5.3.3 Probabilistic data association 19

5.4 Camera Cones Annotation . 22

6 Discussion 28

7 Miscellaneous 29
7.0.1 LiDAR Mount . 29
7.0.2 LiDAR Cage . 30
7.0.3 FastSLAM . 30

7.1 Supporting Resources . 36

8 Appendix 38

5

List of Figures

2.1 MMS team of 2018 at the Australasian Competition, Winton 2

3.1 Acceleration Event . 4
3.2 Skidpad Event . 4
3.3 Trackdrive and Autocross Event . 5

5.1 Testing trolley with mounted sensors and computing box 10
5.2 How data was gathered . 10
5.3 Cones types at the FSG competition 10
5.4 Cone skew due to rolling shutter . 10
5.5 Full perception system flow diagram 13
5.6 SLAM without GPS . 16
5.7 SLAM with GPS . 16
5.8 IMU data from vehicle . 18
5.9 IMU data from trolley . 18
5.10 Cones with overlapping covariance . 19
5.11 Cones with separate covariance . 19
5.12 SLAM using Euclidean Distance . 20
5.13 SLAM using Mahalanobis Distance 21
5.14 FSG screenshot from live stream . 21
5.15 Camera cone detection output . 22
5.16 Camera cone position . 22
5.17 Off the shelf Template Matching . 23
5.18 Off the shelf Template Matching . 24
5.19 Template Matching of different sized objects 24
5.20 Modified LabelImg program . 25
5.21 Template Matching, with false positives 25
5.22 Bright yellow cone template . 25
5.23 Distant blue cones . 26
5.24 Exploring Flood-Fill . 26
5.25 Exploring HSV . 27

7.1 LiDAR Mount . 29
7.2 LiDAR Mount final product . 30
7.4 FastSLAM algorithm . 32

8.1 Actual height of LiDAR as it detects cones 38
8.2 Image to aid calculation of distance given vertical resolution 38

6

List of Tables

5.1 LiDAR v Camera . 13
5.2 Mahalanobis Distance v Euclidean Distance 19

7

Siriluck Ovenden Final Year Project Report 2019

Abbreviations

MMS Monash Motorsport

FSAE Formula Society of Automotive Engineers

FSD Formula Student Driverless

FSG Formula Student Germany

LiDAR Light Detection and Ranging

GPS Global Positioning System

INS Inertial Navigation System

IMU Inertial Measurement Unit

SLAM Simultaneous Localisation and Mapping

EKF Extended Kalman Filter

ROS Robot Operating System

RViz ROS Visualisation tool

YOLOv3 You Only Look Once version 3

MKL Math Kernel Library

CAD Computer Aided Design

8

Introduction and Motivation

Monash Motorsport (MMS) has been active since the year 2000. Traditionally, the
purpose of the team was to design, build and race combustion cars in Australia at the
Formula Society of Automotive Engineers (FSAE) competition. In 2017, MMS entered a
second car into competition, an electric vehicle alongside the combustion car. In 2017,
the competition expanded to include a new competition class called Formula Student
Driverless (FSD) where Formula Student race cars navi-gate through known and
unknown tracks. These tracks are simplistic in that they are primarily on flat ground,
with coloured cones to form a path in an enclosed environment.

� In 2018, MMS started a new department dedicated in research and
development for the driverless car.
� In 2019, the electric vehicle, named M18-E, was retrofitted with sensors, comput-

ing units and actuators to become the first ever Driverless car that MMS has
produced, named M19-D. The research areas included low-voltage systems,
stereoscopic cameras, LiDAR, GPS/INS, Computing, Path Planning and Ve-hicle
Actuation.

In the first half of this project, the author was involved in LiDAR selection, LiDAR
mount design and implementing Simultaneous Localisation and Mapping (SLAM). In the
second half of this project, the author was part of the Perception section which includes
SLAM, LiDAR, GPS/INS and stereoscopic cameras. The motivation for MMS to
develop this car is to compete in Germany and promote interest in an Australasian
driverless competition in the future. The motivation for this Final Year Project is to
improve the perception and localization abilities of the race car.

1

The Team

The purpose of Monash Motorsport is for students to practice and extend their
engineering skills, professionalism, camaraderie and improve performance. The team
typically consists of about 80 students who belong to various sections such as
Aerodynamics, Autonomous, Chassis (and suspension), Powertrain, Business and
Upper Management. The two cars shown in Figure 2.1 are the combustion car (66, left)
and electric car (E65, right). The electric car was transformed into M19-D, the
driverless car of 2019, by

� removing the front wing to make room for the LiDAR VLP-16 mount,

� installing a mount for the Stereolabs ZED camera and a mount for the Piksi
GPS,
� having the right radiator replaced with the computing box which contains

interfacing components and computing units such as the NVIDIA Jetson TX2
and an Intel i7 Motherboard

� adding braking and steering actuators in the cockpit along with their pneu-
matic circuits.

Figure 2.1: MMS team of 2018 at the Australasian Competition, Winton

2

The Competition

Formula Student is the world’s largest engineering student design competition, with
hundreds of teams competing from over a hundred countries and held in several loca-
tions around the world. Traditionally, the vehicles that competed used combustion
engines. After that, the electric vehicle class was introduced. Since 2017, the FSD class
was introduced in Germany at Formula Student Germany (FSG), which was the first
country to host a driverless event and the first to set the rule book for this new class. The
following year, Formula SAE Italy, Formula Electric Italy, Formula Student UK and
Formula Student East also held similar competitions that involved driverless technology.
MMS plans to compete in FSG in the year 2020, with the aim to complete all events.
That is, successfully start and finish all dynamics events. This may seem like a light goal,
but it is indeed quite difficult to finish all competition events even in the traditional
electric and combustion class. In its first year, 2017, with 15 teams entering FSD, only
one team managed to finish the trackdrive event. In its second year with 17 teams, only
three cars finished the trackdrive event with others failing on early laps. The team that has
stood out from the rest is AMZ Driverless (Zürich ETH), who started off winning and
have only improved in performance year by year. The competition consists of static and
dynamic events. The tracks which are known prior (see Fig. 3.1. and Fig. 3.2) to the
competition include the acceleration track, which is a straight of 75m, and skidpad which
has two tangential circles designed to test the car’s cornering ability. The car must
recognise the stop area for both acceleration and skidpad events and come to a complete
standstill to be successful. The autocross and trackdrive events are of interest because
they require navigation through an unknown track autonomously. The track is marked out
with yellow cones on the right and blue cones on the left. The trackdrive and autocross
have identical closed-loop tracks (Fig. 3.3) that are unknown until the day at com-
petition. The circuit can have a layout that has any combination of straights, turns and
hairpins. In the autocross event the car must navigate through this unknown track for the
first time, while in the trackdrive event the vehicle must navigate a racing line and
complete 10 laps of the same circuit to be successful.

3

Siriluck Ovenden Final Year Project Report 2019

Figure 3.1: Acceleration Event

Figure 3.2: Skidpad Event

4

Siriluck Ovenden Final Year Project Report 2019

Figure 3.3: Trackdrive and Autocross Event

5

Literature Review

This project specifically is to aid in developing an autonomous race car for FSD, under the
FSG rules. Therefore, most of the research performed is limited to what other driverless
teams have done, and any papers they have released on this project. Observing what other
teams that have come before Monash Motorsport have done with driverless technology
gives an insightful overview for how the system should work. The analysis of some
teams provides motivation for why the techniques discussed later in this report should
be used, such as probabilistic data association (using the Mahalanobis distance) and
a tool to aid in image labelling. Having a general overview of the hardware, cone
detection and cone association algorithms used is useful for what MMS should aim
towards.

A team from Norway, Revolve NTNU, used a LiDAR and a monoscopic camera [2].
The 3D points of the LiDAR are projected onto the image captured by the camera.
Calibrating the two sensors requires knowledge of the relative position of the camera and
LiDAR, which they determined using OpenCV functions to solve the projection
problem. This is what MMS may consider in the future, as outlined in the Section
7.0.3: Future Work where camera cones and LiDAR cones get merged first before being
processed by SLAM. This research paper suggested two methods which both require
labelled training data for the machine learning algorithms. They calibrated LiDAR and
Camera data using tools such as ROS Visualisation tool (RViz) for LiDAR and Geeqie for
cameras, and then found a few distinct points in LiDAR data that are visually obvious in
image data. They divided the task of labelling images across the whole team using the
open source software, LabelImg, and suggested that a second person should check that all
the frames and box positions are good enough to train the neural networks. Revolve also
used YOLOv3, a neural network for camera cone detection. This team had a similar
problem to MMS with the ZED stereo cameras when speed was increased, which led them
to use a custom stereo camera setup with a global shutter. Revolve NTNU performed
many tests with different neural networks and found YOLOv3 to be the best, which is
what MMS is using.

The top team in this field of study is AMZ who have won all competitions that they have
entered over 2 years and consistently release many helpful papers and other data which
helps competing teams to gain traction in this difficult competition. AMZ use a higher
resolution LiDAR than MMS, the Velodyne Puck Hi-Res while MMS use a VLP-16. The
greater vertical resolution allows AMZ to detect cones using LiDAR at theoretically 4m
further away than MMS (see Appendix A) given our cone detection technique. For camera
cone detection, they developed a neural network that not only draws rectangular bounding
boxes around a cone, but uses ‘edges’ at the 7 points that distinguish a cone, such as the
top of the cone, or the colour transition from blue, to white, to blue again, or from yellow,
to black, to yellow again [3]. This resulted

6

Siriluck Ovenden Final Year Project Report 2019

in depth estimates from the PnP algorithm1 of up to 10m. Feature matching and
triangulation using stereoscopic cameras to batch right and left bounding boxes used
SIFT descriptors and brute-force matching. AMZ use FastSLAM 2.0, because the particle
filter structure inherently allows for computationally efficient independent data
associations. LiDAR and camera pipelines are treated independently, providing
observations at different uncertainty models and different delays. The SLAM map is
updated each time a new landmark is observed. AMZ use the Mahalanobis distance as a
measure of likelihood with which to associate cone measurements.

Another team, KTH Formula Student from Sweden, explored different methods of object
recognition and different data association methods for SLAM. They explored the
Mahalanobis distance to compute individual compatibility and concluded that it is
adequate because spurious landmark measurements rarely occur and the sensors they
used have high accuracy [1]. Another method is joint compatibility branch and bound,
which considers all measurements in one update, but computation require-ments increase
up to two orders of magnitude. They tested SLAM algorithms but seem to have only
tested on small closed loop tracks using about 32 cones. For sensor fusion between
LiDAR and Cameras, they viewed LiDAR and camera information on the same
visualization by restricting the FOV of the LiDAR.

1The PnP (Perspective-n-Point) is the problem of finding the pose of a camera in the world
frame given a set of n 3D points and their respective 2D image projections and known camera
parameters.

2More detail is provided on the topic of different latency and timing issues between camera and
LiDAR in Table 5.1 in Section 5.3

7

Software

5.1 The Framework

The Robot Operating System (ROS) framework was used to run and test sensor
integration with the SLAM system. This required including packages and libraries
such as Eigen (which was coupled with Intel Math Kernel Library (MKL)), and
various standard sensor message types. The results and the track map from SLAM
were displayed using RViz (ROS’s 3D visualisation tool) which depended on message
types provided by the mms master customized ROS package. Using ROS, data
was transferred between subsystems through ’topics’. ROS nodes (C++ programs)
subscribe to or publish to these topics. The ROS bag utility was used to store all
recorded data from sensors or any program output. A bag may contain multiple topics
and their message types which are unique to the topic. Each message in a ROS bag is
coupled with a timestamp so the data can be played back in the exact order and
timespan it was recorded. LiDAR cone detection was done in the mms lidar node,
and camera cone detection was done in the mms camera node. The output of these
nodes were then independently processed by the SLAM node. GPS and INS messages
from the raw bag data were also transferred straight to SLAM running in the Ubuntu
Terminal.

5.2 Integration Overview

In 2018, the research and development phase of developing the driverless car, M19-D,
began. This included the components such as sensors and computing units, and the
introduction of new activities such as gathering data and testing cone detection
algorithms on the data gathered. The autonomous system uses a single LiDAR and
camera, however the vehicle could theoretically run with only one of them. The
team made the decision to purchase both for redundancy and research. The data
gathered included the point cloud from the LiDAR, stereo images from the camera,
GPS signals and data from the IMU. This data is incredibly useful when incorporated
into SLAM, the sensor fusion algorithm, which gives a better estimate of the overall
position of the car and the position of the cones on the track.

5.2.1 Gathering Data

MMS achieved the collection of raw data by setting up a track in an unused car park
using cones to demarcate the path. A ‘trolley’ was used with the sensors and computing
box mounted, pictured in Fig. 5.1, as no driverless car was available at the time for team
members to test with. The computing units and sensors were mounted on this trolley,
which was then pushed around the track (see Fig. 5.2). The motion and vehicle dynamics
of the trolley is completely different from an actual car, making IMU sensors unreliable
and very noisy. This is due to the surface of the

8

Siriluck Ovenden Final Year Project Report 2019

bitumen and having no suspension on the trolley. It was not physically possible for team
members to push the trolley around at high accelerations and turning speeds that the real
car would produce, so there were limitations in testing this aspect of the sensors. Dealing
with sensors such as IMU which are noisy due to a test vehicle that is dissimilar to the
motions of the real car was not ideal. However, sensor data from LiDAR, GPS and
cameras were gathered reliably because their perception was not interfered by how the
trolley moved. Later in the timeline at the beginning of 2019, the electric FSAE vehicle
built by MMS was able to be used for driverless purposes since it had finished its last
competition in December, at the Australasian FSAE Competition 2018. This vehicle was
fitted with the sensors, computing box and actuators in 2019 to become M19-D, Monash
Motorsport’s first driverless vehicle.

The cones used at the FSG competition (see Fig. 5.3) have black or white bands.
Ideally, these would have been purchased from Germany and shipped to Australia,
however this proved to be too costly. Therefore, the data gathered at testing is of
cones that are pure yellow and pure blue. The implications of this is that the
perception section is currently gathering data to train the neural network, YOLOv3, on
generic blue and yellow cones without the black and white bands.

European project teams also exchange labelled data via a Github repository as the
teams know that gathering and labelling camera data is extremely tedious and too time
consuming given the yearly project timeline. MMS would like access to the database
but the collaboration requires mandatory contribution of a minimum of 600 labelled
mages of FSG cones which MMS does not have. Some teams have approached this
issue by forming a partnership with a company that labels data professionally.

5.2.2 Testing

Gathering data using the trolley meant that the cone detection algorithms could be tested
and GPS signals were recorded for later use in SLAM. At the time of this project, camera
cone detection and stereo matching1 were not yet robust enough to be integrated into
SLAM, so only LiDAR cone detection was used. Once the FSAE vehicle was ready in
March 2019, testing was performed with one of the team’s drivers who drove around the
track at high speeds, producing more accurate data from the cameras and IMU. This made
it more realistic for testing software, such as cone detection algorithms and the SLAM
algorithm. A setback became evident when the driver turned around corners at higher
speeds (about 40km/h) and caused the rolling shutter from the camera to be evident,
which affects how the neural network detects cones. This cannot be easily solved through
software, as it is a phenomenon that occurs when the camera vibrates, such as when it is
fixed to a car. A solution through software would require the motion of the car to be taken
into account as the camera writes the pixel values. However, it is simply easier to acquire
a camera that has a global shutter.

When the car is turning, the cones in the camera image are skewed as seen in

1Stereo matching is the process of forming a 3D construction from 2 sets of images. Another
team member is working on improving robustness and computation time, as this requires a GPU
which the Author does not have.

9

Siriluck Ovenden Final Year Project Report 2019

Figure 5.1: Testing trolley with
mounted sensors and computing
box

Figure 5.2: Data was gathered by
pushing a trolley around a track

Figure 5.3: Cones types at the FSG competition

Figure 5.4: Cone skew due to rolling shutter

Fig. 5.4. This figure shows a blue cone in shadow that is captured but appears
asymmetric about the vertical axis. Note that the ghost shown in this image is not seen
by the neural network, it is only included for visual analysis of the stereoscopic camera.

After raw LiDAR data and camera data was gathered, these are then put through
their respective cone detection algorithms. The output of these algorithms provide
cone locations and cone types to the SLAM algorithm in real time. So far, only
LiDAR cone detection works when integrated into SLAM, implemented by another

10

Siriluck Ovenden Final Year Project Report 2019

FYP student. Testing of the SLAM algorithm and the integration of GPS and IMU can
be done on any computer that has Linux, all the required ROS packages and math
libraries installed. Testing of the camera cone detection neural network re-quired a
computer which has a GPU to perform the parallel processes that real-time image
processing requires. The cone outputs would then be stored in a bag which can be
run on a regular computer to test integration with the SLAM algorithm. In general, 10
minutes of recorded stereoscopic camera data uses about 210GB while other sensors
such as LiDAR and GPS/INS inclusive use only 3GB over the same interval. These
two requirements of a computer with a GPU and a lot of storage space encumbered
camera integration, as the team only has access to 2 devices that met these
requirements: the computer mounted on the car and a team member’s personal
desktop.

11

Siriluck Ovenden Final Year Project Report 2019

5.3 Sensor Fusion

The cone detection outputs are passed on to a SLAM algorithm, which is a form of sensor
fusion. SLAM itself is a generic term for a class of algorithms that may differ depending
on the type of mapping and the scope required for a particular use case. In this case, the
SLAM method was based on the Extended Kalman Filter (EKF). The EKF is simply a
Kalman Filter that has been extended to non-linear systems using a Jacobian. The general
overview of how a SLAM algorithm works is by using a combination of dead reckoning
and perception sensors to improve the accuracy of the position and heading of a robot or
vehicle. A simple SLAM system may take odometry readings and sensor data from a
laser scanner, which detects the distance of the surrounding objects. Each time the vehicle
moves, the algorithm will predict where the objects will be in the current time step and
compare this to the actual measured distances. This comparison means taking the
difference between predicted cone position and measured cone position, otherwise known
as the innovation. The algorithm keeps track of every object seen and the vehicle’s
position (and derivatives) in a state vector, and their relations in a covariance
matrix. The state vector contains the pose of the vehicle and the cone locations,
while the covariance matrix holds the uncertainties of the state variables in relation
to each other. Generally, the school of thought is that adding more sensors will
provide more information about the environment, thus making the SLAM system
more accurate. One aspect of the mapping component of SLAM is the data association
method, which is used to determine if a newly measured object is the same as what is
already in the state, or if it should be appended to the state. A key term in SLAM is
loop closure, which is when the vehicle recognises an environment that it has seen before
by the position of the cones, the type of cones, and the vehicle’s current position.
Loop closure is useful for gaining certainty of position and understanding the start
and stop line in SLAM for the trackdrive event. The sensor fusion aspects discussed
here is the addition of GPS measurements into the SLAM system.

Sensor fusion itself is a broad topic. The term could refer to fusion on various levels
including fusion of features and decisions [4]. The type of sensor fusion relevant to
this report is

� cross sensor fusion, where the sensor measurements involve the same physical

objects, such as LiDAR and stereoscopic cameras measuring the position
of cones

� cross attributes fusion, where sensors measure different qualities across the
same situation

These types of fusion will contribute to receiving an input, detecting features, and
making a decision to feed to the next block in the pipeline: path planning and
motion control. A full system diagram is shown in Fig 5.5.

The LiDAR and stereoscopic camera in this case are complementary, because the sensors
do not directly depend on each other, but can be combined to provide more accurate cone
locations. They each offer different attributes outlined in Table 5.1. Together, they
compensate for each other’s weaknesses to create a perception system that builds a more
complete and robust environment. The LiDAR and stereoscopic camera sensors have a
cooperative configuration with GPS/INS and

12

Siriluck Ovenden Final Year Project Report 2019

wheel speed sensors which are fused in SLAM to provide more accurate data about
vehicle location and cone location.

Figure 5.5: Full perception system flow diagram

Table 5.1: LiDAR v Camera

LiDAR Stereoscopic Camera
Colour Can see colour of cones but to a limited

extent, and would need a higher vertical
resolution to draw useful conclusions

Can see colour of cones

FOV Larger horizontal FOV, with 360deg
FOV but once mounted on the car is
limited to 240deg, which is better for
hairpin corners.

Cameras are only forward facing, with
70deg FOV

Weather
conditions

Not susceptible to weather conditions,
lighting conditions, (rain, overcast,
sunny)

Detection algorithm must be trained on
data that has a wide range of weather
and lighting conditions (rain, overcast,
sunny)

Latency A LiDAR sweep is every 100ms, cone
in-formation message is published 5ms
af-ter this

Frame rate is 30 FPS, cone information
message is published 20ms after this.

Number of
objects

LiDAR produces 1 cone at a time as
detection is done as the LiDAR sweeps.

Cameras may detect any number of
cones from an image.

Distance Detect a cone at 5-10m, limited by ver-
tical resolution

Distance: Neural network can detect a
cone and feed to stereo matching for
cones 15-20m away

13

Siriluck Ovenden Final Year Project Report 2019

5.3.1 Adding GPS into SLAM

After EKF SLAM was working in C++ purely using LiDAR cone detection, sensor inputs
from GPS needed to be included. The motivation for using GPS is to reduce the
uncertainty of the vehicle’s position, which in turn reduces the uncertainty of cone
positions in the world coordinate frame. The GPS system produces centimetre accurate
results due to a base station and RTK (real time kinematics). Running EFK SLAM solely
on LiDAR cone detection exhibited some drift of about 2-3 meters by the time the car
‘closed the loop’ after it had driven through the circuit and returned to the starting
position. While existing MATLAB code from a previous FYP student provided
calibration of the GPS and integration into its own EKF, it lacked any methods to
combine the coordinate frames which were different for GPS and the global frame.

There are two cartesian coordinate frames that are relevant when fusing the GPS
sensor with SLAM.

1. the ‘world’ coordinate frame, which is the ground-truth frame that doesn’t
change. When SLAM is initialised, this and the vehicle frame are initialized
such that the positive x-direction of the frame is the vehicle’s initial forward
heading.

2. the ’GPS’ coordinate frame, which is also initialised to the same position as
the ’world’ and ’vehicle’ coordinate frames, however the relative rotation
between them is unknown. The X and Y axis represent longitude and latitude
respectively. The positive x-direction of the GPS frame is always in the easterly
direction.

Before GPS can be integrated, the car location in the GPS frame must be rotated by an
angle αgps to match the car location in the SLAM frame. If the car is heading east, given
the GPS positive x-direction is east, then the measurements agree. However, the rotation
of points is required if the car is heading in any other direction, such as north-west, while
the positive x-direction of GPS remains pointing towards east. To solve this problem, the
GPS frame is initially assumed to coincide with the SLAM frame. Now the SLAM frame
will have the car position at one point, while the GPS will likely measure the car to be at
another point. The angle between two vectors is calculated, where one vector is of the x
and y coordinates of the car’s position in the SLAM frame, and the second vector is the x
and y coordinates of the car’s position in the GPS frame. The angle between the two
vectors is calculated from the x and y coordinates of the car from the SLAM frame (xstate,
ystate) and the GPS frame (xgps, ygps).

α = cos−1 xstatexgps + ystateygps
|xstate, ystate|.|xgps, ygps|

Before calculating α, SLAM must wait for the vehicle to move a certain distance away
from the origin before attempting to integrate GPS. This is so that the angle of the vector
of the car’s position in the SLAM and GPS frame can be calculated with respect to the
origin and any noise in the GPS measurement or SLAM estimation doesn’t cause wildly
varying angles at small distances.

14

Siriluck Ovenden Final Year Project Report 2019

To ensure that the correct sign of the angle is applied to the rotation, the sign of the angle
is reversed when the cross product is greater than zero. This is to ensure that this method
works on different tracks that may start a westerly heading direction, which would be
opposite to the GPS’s heading direction.

cross product = xstateygps − ystatexgps

The angle αslam,i with which to rotate the car from the GPS frame to the SLAM frame is
calculated using a weighting. This weighting is between previous angles αslam,i−1
calculated and the current angle α calculated and n is the number of times a GPS
measurement has been received. This behaves in the same way as storing all previous
estimations of the relative frame angle and averaging them. This is reasonable as the
angle is a fixed constant once SLAM is initialized.

αgps,i = αgps,i−1(
n

n+ 1
) + α(

1

n+ 1
)

Finally, the GPS x and y coordinates are calculated from rotating the original
xgps, ygps by the new GPS frame angle.

[
xrotated
yrotated

]
=

[
cos(αgps,i) −sin(αgps,i)
sin(αgps,i) cos(αgps,i)

] [
xgps
ygps

]
The SLAM algorithm may exhibit some accumulated error when using only LiDAR for
the update step, shown in Fig. 5.6. The integration of GPS results in the large orange
start cones being seen in almost exactly the same position as they were first seen, shown
in Fig. 5.7, which means the end result is more accurate. This can potentially aid in loop
closure when the car is travelling at a faster pace and the INS can not accurately provide
measurements to help predict the vehicle position.

15

Siriluck Ovenden Final Year Project Report 2019

Figure 5.6: SLAM without GPS

Figure 5.7: SLAM with GPS

16

Siriluck Ovenden Final Year Project Report 2019

5.3.2 Adding IMU into SLAM

The Inertial Measurement Unit (IMU) consists of accelerometer, magnetometer and
gyroscope. These sensors provide information about the motions of the vehicle such as
the rate of turning around a corner and acceleration. In order to integrate IMU, the EKF
SLAM code had to be changed to accommodate eight state variables along with other
system variables. The state matrix is an n × 1 matrix that contains the pose of the vehicle
and the positions of all landmarks. The pose of the vehicle was expanded to include yaw
rate θ̇, acceleration ẍ, and acceleration ÿ. The 8 states variables are

x, y, θ

ẋ, ẏ, θ̇
ẍ, ÿ

IMU integration is a ‘double edged sword’ in that it comes with the benefits of frequent
sensor inputs, but this also consumes processing time and power, which slows down the
overall computation of SLAM. IMU is the fastest sensor integrated with SLAM, capable
of providing measurements at 200Hz, while other sensors are typically 30Hz. Including
the IMU is computationally expensive, requiring large calculations of the covariance
matrix at each update. With the computing power available, the only way to integrate
IMU without SLAM failing was to subsample by an empirically determined factor of 8,
beyond this point SLAM could no longer complete all the required computations to
ensure no data was lost. At the time of this project, the IMU mounted to the testing trolley
was noisy due to the trolley vibrations on the rough surface of the bitumen in the carpark,
and any cornering did not produce clean enough2 acceleration values to be useful in
SLAM. The accel-eration magnitudes are much greater in a vehicle being driven (Fig.
5.8) compared to the trolley (Fig 5.9). This figure shows noisy IMU on the trolley while
the trol-ley was being pushed slowly straight ahead from a starting position. This meant
that the data was more useful to analyse and develop algorithms for. However, the IMU
sensor itself has still proven to be noisy so the measurements aren’t as heavily weighted
by the SLAM algorithm as other sensor inputs or the control input. The SLAM algorithm
’trusts’ (weights more) the information provided by a sensor mea-surement based on the
noise covariance that the programmer provides. For instance, if there is a sensor that is
noisier than others, then its noise covariance values are increased by the programmer, so
SLAM won’t allow the sensor to heavily influence the state. The programmer would
obtain these numbers through empirical testing the accuracy and repeatability of a sensor.
If a sensor is not ‘trusted’ it means the sensor’s input does not weigh heavily in SLAM’s
update step.

2After March 2019, when the electric vehicle could be used, the sensors were mounted and
another team member successfully integrated IMU and gyroscope into SLAM.

17

Siriluck Ovenden Final Year Project Report 2019

Figure 5.8: IMU data from vehicle has higher accelerations and is less noisy than
trolley.

Figure 5.9: IMU data from trolley

18

Siriluck Ovenden Final Year Project Report 2019

5.3.3 Probabilistic data association

Data association in SLAM involves cone detection and the addition of new cones
into the SLAM state. Data association is the process of making the decision to either
update an existing cone based on a new measurement or add a new cone to the state
from the new measurement. Data association is the process that adds a new cone to
the track. Before this FYP, data association was done based on the Euclidean
distance: if the measured cone position is too far away from any other cone in the
state, then append the measured cone to the state. If the measured cone position is
close enough to a cone that is already in the state, then they are deemed to be
associated. The existing cone in the state is updated using the new measurement.
Implementing probabilistic data association allows SLAM to take into account the
existing cone's certainty3 from the covariance matrix and compare it with the measured
cone’s certainty which is based on the vehicle and measurement’s certainty. That is, if
the vehicle’s position is uncertain, then the measured cone’s position must be even
more uncertain. The motivation for replacing Euclidean distance with the
Mahalanobis distance is to prevent false positives, to more accurately combine cones
that are seen twice after loop closure, and to distinguish cones that are placed side by
side. The scenario of when cones are placed side-by-side occurs at the starting
position of the track drive and autocross event. A covariance of each cone location
is kept in the EKF SLAM covariance matrix, which provides information about the
certainty of a cone position in the SLAM frame.

A simple comparison of the Euclidean distance to the Mahalanobis distance given using
Fig. 5.10 and Fig. 5.11 and Table 5.2. The figures show the blue cones with their
respective covariance ellipses circled around them.

Table 5.2: Are A and B the same cone?

Fig. 5.10 Fig. 5.11
Euclidean Yes Yes
Mahalanobis Yes No

Figure 5.10: Cones with overlap-
ping covariance

Figure 5.11: Cones with separate
covariance

3What is meant by ‘certainty’ here is the 2x2 covariance matrix of the cone’s x and y position.

19

Siriluck Ovenden Final Year Project Report 2019

The implementation of the Mahalanobis distance calculation is a statistical approx-
imation, as more specific calculations require too much computation and time for
it to be a feasible real-time solution. Σpooled is the combination of the covariance of
the cone from the state and the covariance of the measured cone.

[
dx
dy

]
=

[
xstate
ystate

]
−
[
xcone
ycone

]

Σpooled =
1

2
(Σstate + Σmeas)

Mahalanobis distance:

D2 =

[
dx
dy

]T
Σpooled

[
dx
dy

]
A cone is then combined into the state if its Mahalanobis distance is within a
threshold to an existing cone. Otherwise, it is added to the state as a new cone.

Figure 5.12: SLAM using Euclidean Distance.
This shows the map created by SLAM before using the Mahalanobis distance.

20

Siriluck Ovenden Final Year Project Report 2019

Figure 5.13: SLAM using Mahalanobis Distance.
This shows the map created by SLAM after using Mahalanobis distance. It can be
seen that the two start cones (see Fig. 5.14) are no longer associated as one cone.

Figure 5.14: FSG screenshot from live stream. The big orange cones are placed next
to each other after the starting position

21

Siriluck Ovenden Final Year Project Report 2019

5.4 Camera Cones Annotation

Camera-cone detection in MMS’s system is very jittery and inaccurate, which affects
stereo-matching and therefore the placement and distance of the cones when input into
the SLAM algorithm, as shown in Fig. 5.15. The mms camera node performs isolated
stereo matching on regions of the image detected as a cone, and constructs a set of cone
positions on a 2D map. This map viewed from the vehicle’s point of view is shown in
Fig. 5.16.

Figure 5.15: Camera cone detection output

Figure 5.16: Cone position as a result of camera cone detection

It can be seen in Fig. 5.15 that the placement of the bounding boxes around the
cones does not match the cone’s in the image very well. What may have contributed to
this inaccurate matching is the neural network (NN) has not been trained on
enough data. It has only been trained on 300 images, while other teams have trained
their neural networks on tens of thousands of images. Some teams claim to have
45,000 images labelled4, typically by sponsors or otherwise outsourcing this service.
When this cone detection output is provided to SLAM, the positions of the cones
keep changing, and some of this can be attributed to non-robust stereo matching.
Another disadvantage is that the cones MMS have access to, are not the same as

4 Revolve NTNU Facebook page, ‘Reveal 2019’ video

22

Siriluck Ovenden Final Year Project Report 2019

those used at FSG. This difference in the types of cones detected can affect how the
neural network performs when faced with FSG cones. While we are training our data
with artificially augmented cones to develop a robust neural network, we cannot know
the actual performance when our system sees the actual competition cones.

To make the process of labelling images easier, a tool was implemented to be used
alongside the existing LabelImg software. LabelImg is an open source image la-
belling tool that can output labelled image data in the YOLO format and PASCAL
VOC format. Labelling images is a tedious and time-consuming activity for the
Autonomous members of the team. A tool was developed which utilized OpenCV’s
template matching function to extract multiple cone positions from an image based on
a template of a cone. The original code only returned one instance of a region in the
target image which best matched with the template. This program was com-piled and
included in a fork of the LabelImg repository. This open source software code was
transformed to include a button for the user that executes the template matching C++
code. The progression of the code development can be seen from Fig. 5.17 to Fig.
5.18 to Fig. 5.19 and eventually to Fig. 5.20.

Figure 5.17: Off the shelf Template Matching

Originally, the intention of the program was to draw bounding boxes around cones using
fixed templates to minimise user input and maximise automation. However, it only
works when the template is very similar to those regions present in the image. This
resulted in the merge of the C++ program for cone detection with the LabelImg program
to have an easy interface for the user to add a template. At the click of the button “Add
Template”, all other similar cones are labelled. To detect more distant cones in the image,
the template size had to be changed from large to small so that the template matching
worked properly. To minimise false positives, the hue value of the middle pixel of the
template must be close enough to the hue of the middle of the matched regions.

If one general template is used for all images, template matching fails because the
lighting conditions are different. Although they may be the same hue, the resulting image
is completely different and contains incorrect boxes and many false positives, as seen in
Fig. 5.21 when using the template from the previous image, 5.22. The

23

Siriluck Ovenden Final Year Project Report 2019

Figure 5.18: Off the shelf Template Matching

Figure 5.19: Template Matching of different sized objects

template does not resemble the cones in the target image well enough, as the tem-
plate is in full sunlight while the cones in the target image are in shadow. This is
the reason for including the ability for the user to add a template. The template
drawn in the current image matches the lighting conditions in which the cones were
captured.

The limitations of this is solution is it does not work well for very distant cones,
which look too blurry as shown in Fig. 5.23 to be matched well using a template.
Hence, the distant cones would have to be drawn in manually using the LabelImg
tool. Even if the user added another template by drawing one around the small
blue cones, the template matching algorithm will likely pick up many false positives
because the blue colour is so similar to the grey bitumen. In addition, the cone in
the template might have white background lines from the car park while other cones do
not, which would further interfere with the template matching algorithm.

24

Siriluck Ovenden Final Year Project Report 2019

Figure 5.20: Modified LabelImg program

Figure 5.21: Template Matching, with false positives

Figure 5.22: Bright yellow cone template

Other methods apart from template matching were explored, such as using flood-fill
methods and HSV methods. However, these methods proved to be too sensitive to

25

Siriluck Ovenden Final Year Project Report 2019

different shading and lighting conditions, because it would be difficult to set a good
threshold value for each new image from different days of testing. HSV and flood-fill can
also be sensitive when the blue colour blends in too much in the bitumen on a cloudy day,
or when a yellow cone blends in with a white background line of the car park. These
experiments are shown in Fig. 5.24, and Fig. 5.25 where orange and yellow cones cannot
be easily distinguished from each other. Flood-fill also failed on a dark day where blue
cones blended in with the bitumen and on sunny days where the yellow cones blended
with the painted white lines. The threshold values for both methods were not robust under
different lighting conditions. HSV was implemented in such a way to guard against false
positives for the main template matching algorithm.

Figure 5.23: Distant blue cones do not get matched very well

Figure 5.24: Exploring Flood-Fill

26

Siriluck Ovenden Final Year Project Report 2019

Figure 5.25: Exploring HSV

27

Discussion

As part of the Autonomous section, this FYP contributed to the perception systems for
M19-D; the driverless FSAE vehicle. The GPS has been successfully integrated into
LiDAR-based SLAM. The drift in the SLAM system due to the summation of error over
each measurement and distance travelled has been corrected by the integration of GPS.
The SLAM system also has more accurately determined cone positions by using the
Mahalanobis distance as the data association method without sacrificing noticeable
computational power. Team members can use camera anno-tation software to quickly
annotate images containing cones from data gathered at testing. The tool has been
integrated with an already existing and popular tool, LabelImg. The template matching
tool is therefore easy to use and improves effi-ciency. The customised camera annotation
software has limitations in that it can have false positives which need to be deleted and it
requires manual editing if the algorithm could not detect all cones. False positives may
occur due to the distance of a cone or different shadowing present in the testing area, in
which case the user can easily delete them. As Monash Motorsport's driverless
package continues to be developed, this FYP provides a foundation for current and
prospective Perception Engineers working on future vehicles.

28

Miscellaneous

This is other work that was contributed to the Monash Motorsport team. The
LiDAR mount is designed to be robust and protect the LiDAR from cone hits
while the car travels at high speeds. The manufacturing of this was the Author’s
responsibility. Research was also done into FastSLAM which may provide some help
for future implementation.

7.0.1 LiDAR Mount

Fig. 7.1 shows the LiDAR mount highlighted in orange, which sits at the front of
M19-D, and the grey object underneath are the jigs which were designed for the
purpose of manufacturing. The full document of how the mount was made is
documented on the MMS internal Wikipedia. The resulting product can be seen in
Fig. 7.2.

Thank you to all those who welded these parts for me and provided advice: Filip
Surla, James Murray, Reece Day, Lachlan Hore, Aryaman Pandav, George Lloyd,
Will Harding, Paul Hendy, Leon Shi, Justin Green and others.

Figure 7.1: LiDAR Mount
LiDAR Mount (orange) and manufacturing jigs (grey) in Computer Aided

Design (CAD)

29

Siriluck Ovenden Final Year Project Report 2019

Figure 7.2: LiDAR Mount final product
Finished LiDAR mount on M19-D, when M19-D was driven manually before

autonomous actuators were implemented.

7.0.2 LiDAR Cage

The LiDAR Cage protects the LiDAR while it is mounted on the car but not in use.
The nature of the workshop where M19-D is built, tested and maintained involves
people moving around. Since the LiDAR is mounted low to the ground, there
was a risk of people hitting it with their boots or dropping tools on the expensive
sensor.

(a) LiDAR Cage
(b) LiDAR Cage welded, before
sand blasting and painting

7.0.3 FastSLAM

The initial plan was to implement FastSLAM, but because EKF was working suc-
cessfully with LiDAR, the team pushed forward to integrate everything else to get the
driverless system up and running as soon as possible. This significantly re-duced the
amount of time dedicated to working on FastSLAM and thus it never reached the
development stage. The following summary may prove useful for future development:

The initial goal is to get a small system to work first, with a small number of particles on
your preferred programming language that includes an IDE that is viable for easy
visualisation. Without seeing the program run on a 2D map with vehicle pose and cone
location, there is no evidence that your algorithm works. An overview of the

30

Siriluck Ovenden Final Year Project Report 2019

FastSLAM algorithm is described by the flow diagram in Fig. 7.4.

How the FastSLAM algorithm works: Begin by defining a FastSLAM class which uses
the Particle class. Each particle contains the pose of the vehicle, landmark positions and
their covariances (2x2 EKF). Each particle represents one path and one map. Each
particle is ”certain” they know exactly where they are. The Particle class is responsible
for these operations:

� Calculates vehicle pose given the landmarks seen and given the control input.
Hypotheses are made on the motion model, which can be non-linear and non-
gaussian.

� Calculates the EKF of each landmark, new information is used to update
the PDF (probability distribution function) of the car pose and to decrease
uncertainty.

� Computes the likelihood of each landmark being correlated to a landmark that
has already been seen.

� The correlation could be done using a minimum mean square algorithm.
� If not enough correlation, a new instance of a landmark is created.

� If a landmark has been seen before, then its correspondence gets updated to
a new value.

The FastSLAM class is responsible for these operations:
� Predicts where each particle will be, given the control inputs (movement,

odometry)

� Each particle is updated with a new weight given how much ”what is seen”
matches what was ”predicted to be seen”.

� The particle is given a new ’weight’ or gets decommissioned if it’s unlikely
that that particle represents the true state of the world. The weight of the
particles is determined by two sources of uncertainty: the sensor and the
estimate (motion model)

� Each particle belongs in a pool of samples that all get given a ’weight’
depending on how likely it is to be true given the control input and the
observation.
� The weights are normalized, i.e. distributed to sum to one.
� Particles get resampled in the next time step according to their weights.
� Resampling should only be done if the car has moved, or new measurements
have come into play to avoid particle deprivation.
� A map of each resampled particle is updated using a standard EKF. But sensor

noise must be white, zero-mean and gaussian, and the observation mode is
linearized.

Loop Closure can be aided by the fact that big orange cones will be placed before and
after the start, finish and timekeeping lines. FastSLAM will be difficult to

31

Siriluck Ovenden Final Year Project Report 2019

implement because of all the parameters that must be tuned, such as the number of
particles used, noise variables and FastSLAM will require more computation. It is
worth for future Autonomous Systems members to look further into this.

Figure 7.4: FastSLAM algorithm
The green blocks represent functions that are called for each particle. The blue

blocks represent the FastSLAM algorithm itself with the predict, correct and
resample steps. The pink blocks represent incoming information while the

algorithm is active.

32

Siriluck Ovenden Final Year Project Report 2019

Future Work

These suggestions for future work for Monash Motorsport are from the perspective of
other people who are involved in the Autonomous Perception section. The sug-gestions
include looking into different SLAM algorithms to make sensor fusion faster in real time
and looking into simulation methods so that perception algorithms can be more easily
tested. The suggestions are as follows:

� Other SLAM algorithms
– Particle-based filters such as FastSLAM because it may be more robust

than the Extended Kalman Filter SLAM. Particle filters are appropri-ate for
when the vehicle faces hard data association problems, where the vehicle can
be globally uncertain and might choose from a number of hypotheses about
where it could be in the environment. FastSLAM adds computational
complexity and it is more difficult to develop. How-ever, with EKF SLAM
implemented, this can be used to develop Fast-SLAM which consists of many
small EKF calculations. The downsides of fastSLAM are potential lack of
diversity in particles if there is not enough noise in the system to diversify
them, or this can be done artifi-cially. Particle deprivation can be avoided as
well as decreasing required computations by only resampling when the car is
moving, or when a new observation has been made. Low-variance sampling
can also help with particle deprivation, where if all samples have the same
importance weight, no samples are lost. FastSLAM still has a higher
computational requirement than EKF.

– Modular EKFs which involve stitching of smaller EKFs, so that EKF
does not have to do a full update when it is reaching the end of the track in
which case it might have stored 300 landmarks. The full update can be slow
and ROS messages occasionally get missed upon loop closure, especially
when there are high frequency sensors such as IMU which pro-vide data at
200Hz. A modular EKF design that only updates the most recent section of
the map until it is filled with a specific number of cones before ‘starting new’
at the next set of cones. When the big orange start cones are seen again, EKF
may then perform loop closure.

– Unscented Kalman Filter which has more complexity and harder imple-
mentation but is better for non-linear functions like the one the driverless car
has.

– Sparse Information EKF using sparse matrices, which can be exploited
for better computation time at the expense of landmark accuracy.

In any case, the next implementation should try to use matrix decompositions and
avoid doing matrix inverses because these are slow. MMS could implement one
type of SLAM for the discovery lap, and another type of SLAM after loop
closure that is purely for localisation instead of the current EKF, however, this
poses no issues at the moment.

� Improve cone annotation algorithm for faster computations. One method to
implement is to exploit the fact that smaller cones will be more distant, so they

33

Siriluck Ovenden Final Year Project Report 2019

will only appear in the pixels in the upper half of the image. The template
matching could therefore be optimized by only applying matching of smaller
templates in the pixels above where the last, largest template was matched.

� Integrate wheel speed sensors along with a motion model into SLAM. That is,
if a wheel speed sensor reports zero, it does not mean that the car is stationary but
rather the wheels a locked up due to the breaking actuator and the car still moves a
significant distance which should be accounted for in SLAM. The model that
includes wheel speed sensors therefore needs to take into account the history of the
motion of the car and take into account wheel slip.

� Integration of cameras and LiDAR such that they don’t both feed cone infor-
mation to the EKF, but decide on cone position together on a separate node
before crowding the EKF with updates. A Kalman Filter or other sensor fu-
sion technique should be used to combine cone information from camera and
LiDAR and produce a certain result. However, this may not produce real time
results because the camera has a lot of latency while the LiDAR does not.

� Implement and design more visual debugging methods such as having a sepa-
rate window that displays the EKF covariance matrix where you can see how it
updates with each sensor input.

� The noise parameters in EKF SLAM have been tuned to work, so that SLAM
does not break. So far, it has been difficult for the team to use its available
resources (team member time and testing venue availability) to do tests that will
properly quantify GPS noise and drift, and IMU noise and drift. This would be
especially useful as the testing vehicle can now actually accelerate unlike the
testing trolley that was used in the early onset of this project.

� AMZ verified their car motion model by calculating velocities and comparing
them to the IMU’s measurement values. Verifications like these would be good to
have.

� Experiment to quantify noise on positioning sensors by running SLAM based
on dead reckoning alone, hence, no perception updates.
� Getting better cameras that reduce or eliminate rolling shutter and can handle the
large vibrations that occur during a fast drive of the vehicle.
� Better and more stable stereo matching algorithm, which depends on team
members having access to the necessary and expensive computing units.
� Implement easier platform for testing and simulation: Install a few dedicated

office computers for the Autonomous section that have all the necessary hard-ware
to run modular simulations of a detection system, and full simulations as if the car
was on track with all included vehicle dynamics, all equipped with GPUs to handle
stereo camera outputs.

� It is suggested that MMS moves towards a heavily simulated framework to test
software, and reserve physical vehicle testing for actuation control. One useful aspect
may be to create random track generation with all the parameters de-fined in the rules
such as no longer than 80m straights, constant turns less than 50m diameter, hairpin
turns greater than 9m outside diameter, chicanes, de-

34

Siriluck Ovenden Final Year Project Report 2019

creasing radius turns, etc. A full final-year-project could be dedicated to this. The
methods previously suggested in meetings with the supervisor include

– Start with a circular track and then randomly deform it, eg. apply Gaus-
sian filters to push corners in and other corners out.

– Use Fourier descriptors by regarding each x, y point of the track as x+iy,
add harmonics to deform the circle into an ellipse and add other shapes.
By limiting the number of harmonics, you limit sharp corners.

– Using GANs (generative adversarial network) to create fake tracks.

35

Siriluck Ovenden Final Year Project Report 2019

7.1 Supporting Resources

Camera Annotating, C++ code https://bitbucket.org/geosov/camera_annotating/SLAM, C++

Code https://bitbucket.org/mms-driverless/mms_slam/master/

Editions to LabelImg, Python code https://bitbucket.org/geosov/labelimg_ auto/

Video Link: www.youtube.com

36

References

[1] J. Cressell and I. Törnberg, “A combined approach for object recognition and
localisation for an autonomous racecar,” 2018.

[2] T. D. Frøysa, “Perception for an autonomous racecar,” NTNU Master’s Thesis,
2018.

[3] N. B. Gosala, A. Bühler, M. Prajapat, C. Ehmke, M. Gupta, R. Sivanesan,
A. Gawel, M. Pfeiffer, M. Bürki, I. Sa, R. Dubé, and R. Siegwart, “Redundant
perception and state estimation for reliable autonomous racing,” CoRR, vol.
abs/1809.10099, 2018. [Online]. Available: http://arxiv.org/abs/1809.10099

[4] H. B. Mitchell, Multi-Sensor Data Fusion: An Introduction, 1st ed. Springer
Publishing Company, Incorporated, 2007.

37

Appendix

The vertical resolution of the LiDAR matters because a better resolution means we can
detect cones at a greater distance, which will ultimately allow the vehicle to make
decisions faster about a racing line.

Realistically the LiDAR might detect cones from a position above the ground (see Fig.
8.1) because it is mounted as such on the car. The LiDAR mount was specif-ically
designed to hold the LiDAR such that its centre is at half the height of the cones. The
figure below is the ideal case where the LiDAR will detect a cone at the maximum
distance that it can achieve.

Figure 8.1: Actual height of LiDAR as it detects cones

Calculations using trigonometry will achieve the same result if the calculations are
done by pretending that the LiDAR is actually at ground level, as shown in Fig.
8.2.

Figure 8.2: Image to aid calculation of distance given vertical resolution

Velodyne Puck Hi-Res2 Velodyne VLP-16
Vertical resolution: 1.33° 2°

Maximum Cone detection distance achieved: 14m 9.3m

Velodyne Puck Hi-Res can theoretically detect cones at a distance of 4.7m further
than the VLP-16.

38

